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CHAPTER 1

The Integers

1.1. Numbers and Sequences

1.1.1. a. The set of integers greater than 3 is well-ordered. Every subset of this set is also a subset of the set
of positive integers, and hence must have a least element.

b. The set of even positive integers is well-ordered. Every subset of this set is also a subset of the set
of positive integers, and hence must have a least element.

c. The set of positive rational numbers is not well-ordered. This set does not have a least element.
If a/b were the least positive rational number then a/(b + a) would be a smaller positive rational
number, which is a contradiction.

d. The set of positive rational numbers of the form a/2 is well-ordered. Consider a subset of numbers
of this form. The set of numerators of the numbers in this subset is a subset of the set of positive
integers, so it must have a least element b. Then b/2 is the least element of the subset.

e. The set of nonnegative rational numbers is not well-ordered. The set of positive rational numbers
is a subset with no least element, as shown in part c.

1.1.2. Let S be the set of all positive integers of the form a − bk. S is not empty because a − b(−1) = a + b
is a positive integer. Then the well-ordering principle implies that S has a least element, which is the
number we’re looking for.

1.1.3. Suppose that x and y are rational numbers. Then x = a/b and y = c/d, where a, b, c, and d are integers
with b �= 0 and d �= 0. Then xy = (a/b) · (c/d) = ac/bd and x + y = a/b + c/d = (ad + bc)/bd where bd �=
0. Because both x + y and xy are ratios of integers, they are both rational.

1.1.4. a. Suppose that x is rational and y is irrational. Then there exist integers a and b such that x = a
b where

a and b are integers with b �= 0. Suppose that x+ y is rational. Then there exist integers c and d with
d �= 0 such that x + y = c

d . This implies that y = (x + y) − x = (a/b) − (c/d) = (ad − bc)/bd, which
means that y is rational, a contradiction. Hence x + y is irrational.

b. This is false. A counterexample is given by
√

2 + (−√
2) = 0.

c. This is false. A counterexample is given by 0 · √2 = 0.

d. This is false. A counterexample is given by
√

2 · √2 = 2.

1.1.5. Suppose that
√

3 were rational. Then there would exist positive integers a and b with
√

3 = a/b. Con-
sequently, the set S = {k√3 | k and k

√
3 are positive integers} is nonempty because a = b

√
3. Therefore,

by the well-ordering property, S has a smallest element, say s = t
√

3. We have s
√

3 − s = s
√

3 − t
√

3 =
(s − t)

√
3. Because s

√
3 = 3t and s are both integers, s

√
3 − s = (s − t)

√
3 must also be an integer. Fur-

thermore, it is positive, because s
√

3 − s = s(
√

3 − 1) and
√

3 > 1. It is less than s because s = t
√

3,
s
√

3 = 3t, and
√

3 < 3. This contradicts the choice of s as the smallest positive integer in S. It follows
that

√
3 is irrational.
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2 Section 1.1

1.1.6. Let S be a set of negative integers. Then the set T = {−s : s ∈ S} is a set of positive integers. By the
well-ordering principle, T has a least element t0. We prove that −t0 is a greatest element of S. First note
that because t0 ∈ S, then t0 = −s0 for some s0 ∈ S. Then −t0 = s0 ∈ S. Second, if s ∈ S, then −s ∈ T ,
so t0 ≤ −s. Multiplying by −1 yields s ≤ −t0. Because the choice of s was arbitrary, we see that −t0 is
greater than or equal to every element of S.

1.1.7. a. Because 0 ≤ 1/4 < 1, we have [1/4] = 0.

b. Because −1 ≤ −3/4 < 0, we have [−3/4] = −1.

c. Because 3 ≤ 22/7 < 4, we have [22/7] = 3.

d. Because −2 ≤ −2 < −1, we have [−2] = −2.

e. We compute [1/2 + [1/2]] = [1/2 + 0] = [1/2] = 0.

f. We compute [−3 + [−1/2]] = [−3 − 1] = [−4] = −4.

1.1.8. a. Because −1 ≤ −1/4 < 0, we have [−1/4] = −1.

b. Because −4 ≤ −22/7 < −3, we have [−22/7] = −4.

c. Because 1 ≤ 5/4 < 2, we have [5/4] = 1.

d. We compute [[1/2]] = [0] = 0.

e. We compute [[3/2] + [−3/2]] = [1 + (−2)] = [−1] = −1.

f. We compute [3 − [1/2]] = [3 − 0] = [3] = 3.

1.1.9. a. Because [8/5] = 1, we have {8/5} = 8/5 − [8/5] = 8/5 − 1 = 3/5.

b. Because [1/7] = 0, we have {1/7} = 1/7 − [1/7] = 1/7 − 0 = 1/7.

c. Because [−11/4] = −3, we have {−11/4} = −11/4 − [−11/4] = −11/4 − (−3) = 1/4.

d. Because [7] = 7, we have {7} = 7 − [7] = 7 − 7 = 0.

1.1.10. a. Because [−8/5] = −2, we have {−8/5} = −8/5 − [−8/5] = −8/5 − (−2) = 2/5.

b. Because [22/7] = 3, we have {22/7} = 22/7 − [22/7] = 22/7 − 3 = 1/7.

c. Because [−1] = −1, we have {−1} = −1 − [−1] = −1 − 1 = 0.

d. Because [−1/3] = −1, we have {−1/3} = −1/3 − [−1/3] = −1/3 − (−1) = 2/3.

1.1.11. If x is an integer, then [x] + [−x] = x − x = 0. Otherwise, x = z + r, where z is an integer and r is a
real number with 0 < r < 1. In this case, [x] + [−x] = [z + r] + [−z − r] = z + (−z − 1) = −1.

1.1.12. Let x = [x] + r where 0 ≤ r < 1. We consider two cases. First suppose that r < 1
2 . Then x + 1

2 =
[x] + (r + 1

2 ) < [x] + 1 because r + 1
2 < 1. It follows that [x + 1

2 ] = [x]. Also 2x = 2[x] + 2r < 2[x] + 1
because 2r < 1. Hence [2x] = 2[x]. It follows that [x]+ [x+ 1

2 ] = [2x]. Next suppose that 1
2 ≤ r < 1. Then

[x] + 1 ≤ x + (r + 1
2 ) < [x] + 2, so that [x + 1

2 ] = [x] + 1. Also 2[x] + 1 ≤ 2[x] + 2r = 2([x] + r) = 2x <

2[x] + 2 so that [2x] = 2[x] + 1. It follows that [x] + [x + 1
2 ] = [x] + [x] + 1 = 2[x] + 1 = [2x].

Copyright c© 2011 Pearson Education, Inc. Publishing as Addison-Wesley



Chapter 1 3

1.1.13. We have [x] ≤ x and [y] ≤ y. Adding these two inequalities gives [x] + [y] ≤ x + y. Hence [x + y] ≥
[[x] + [y]] = [x] + [y].

1.1.14. Let x = a+r and y = b+s, where a and b are integers and r and s are real numbers such that 0 ≤ r, s <
1. By Exercise 14, [2x] + [2y] = [x] + [x + 1

2 ] + [y] + [y + 1
2 ]. We now need to show that [x + 1

2 ] + [y + 1
2 ] ≥

[x + y]. Suppose 0 ≤ r, s < 1
2 . Then [x + 1

2 ] + [y + 1
2 ] = a + b + [r + 1

2 ] + [s + 1
2 ] = a + b, and [x + y] =

a+b+[r+s] = a+b, as desired. Suppose that 1
2 ≤ r, s < 1. Then [x+ 1

2 ]+[y+ 1
2 ] = a+b+[r+ 1

2 ]+[s+ 1
2 ] =

a + b + 2, and [x + y] = a + b + [r + s] = a + b + 1, as desired. Suppose that 0 ≤ r < 1
2 ≤ s < 1. Then

[x + 1
2 ] + [y + 1

2 ] = a + b + 1, and [x + y] ≤ a + b + 1.

1.1.15. Let x = a + r and y = b + s, where a and b are integers and r and s are real numbers such that 0 ≤
r, s < 1. Then [xy] = [ab + as + br + sr] = ab + [as + br + sr], whereas [x][y] = ab. Thus we have [xy] ≥
[x][y] when x and y are both positive. If x and y are both negative, then [xy] ≤ [x][y]. If one of x and y
is positive and the other negative, then the inequality could go either direction. For examples take x =
−1.5, y = 5 and x = −1, y = 5.5. In the first case we have [−1.5 · 5] = [−7.5] = −8 > [−1.5][5] = −2 · 5 =
−10. In the second case we have [−1 · 5.5] = [−5.5] = −6 < [−1][5.5] = −1 · 5 = −5.

1.1.16. If x is an integer then −[−x] = −(−x) = x, which certainly is the least integer greater than or equal
to x. Let x = a + r, where a is an integer and 0 < r < 1. Then −[−x] = −[−a − r] = −(−a + [−r]) =
a − [−r] = a + 1, as desired.

1.1.17. Let x = [x] + r. Because 0 ≤ r < 1, x + 1
2 = [x] + r + 1

2 . If r < 1
2 , then [x] is the integer nearest to x and

[x + 1
2 ] = [x] because [x] ≤ x + 1

2 = [x] + r + 1
2 < [x] + 1. If r ≥ 1

2 , then [x] + 1 is the integer nearest to
x (choosing this integer if x is midway between [x] and [x + 1]) and [x + 1

2 ] = [x] + 1 because [x] + 1 ≤
x + r + 1

2 < [x] + 2.

1.1.18. Let y = x + n. Then [y] = [x] + n, because n is an integer. Therefore the problem is equivalent to prov-
ing that [y/m] = [[y]/m] which was done in Example 1.34.

1.1.19. Let x = k + ε where k is an integer and 0 ≤ ε < 1. Further, let k = a2 + b, where a is the largest integer
such that a2 ≤ k. Then a2 ≤ k = a2 + b ≤ x = a2 + b + ε < (a + 1)2. Then [

√
x] = a and [

√
[x]] = [

√
k] =

a also, proving the theorem.

1.1.20. Let x = k + ε where k is an integer and 0 ≤ ε < 1. Choose w from 0, 1, 2, . . . , m − 1 such that w/m ≤
ε < (w + 1)/m. Then w ≤ mε < w + 1. Then [mx] = [mk + mε] = mk + [mε] = mk + w. On the
other hand, the same inequality gives us (w + j)/m ≤ ε + j/m < (w + 1 + j)/m, for any integer j =
0, 1, 2, . . . , m− 1. Note that this implies [ε + j/m] = [(w + j)/m] which is either 0 or 1 for j in this range.
Indeed, it equals 1 precisely when w+j ≥ m, which happens for exactly w values of j in this range. Now
we compute

∑m−1
j=0 [x + j/m] =

∑m−1
j=0 [k + ε + j/m] =

∑m−1
j=0 k + [ε + j/m] = mk +

∑m−1
j=0 [(w + j)/m] =

mk +
∑m−1

j=m−w 1 = mk + w which is the same as the value above.

1.1.21. a. Because the difference between any two consecutive terms of this sequence is 8, we may compute
the nth term by adding 8 to the first term n − 1 times. That is, an = 3 + (n − 1)8 = 8n − 5.

b. For each n, we have an −an−1 = 2n−1, so we may compute the nth term of this sequence by adding
all the powers of 2, up to the (n − 1)th, to the first term. Hence an = 5 + 2 + 22 + 23 + · · · + 2n−1 =
5 + 2n − 2 = 2n + 3.

c. The nth term of this sequence appears to be zero, unless n is a perfect square, in which case the term
is 1. If n is not a perfect square, then [

√
n] <

√
n, where [x] represents the greatest integer function.

If n is a perfect square, then [
√

n] =
√

n. Therefore, [[
√

n]/
√

n] equals 1 if n is a perfect square and 0
otherwise, as desired.

d. This is a Fibonacci-like sequence, with an = an−1 + an−2, for n ≥ 3, and a1 = 1, and a2 = 3.

Copyright c© 2011 Pearson Education, Inc. Publishing as Addison-Wesley



4 Section 1.1

1.1.22. a. Each term given is 3 times the preceding term, so we conjecture that the nth term is the first term
multiplied by 3, n − 1 times. So an = 2 · 3n−1.

b. In this sequence, an = 0 if n is a multiple of 3, and equals 1 otherwise. Let [x] represent the greatest
integer function. Because [n/3] < n/3 when n is not a multiple of 3 and [n/3] = n/3 when n is a
multiple of 3, we have that an = 1 − [[n/3]/(n/3)] .

c. If we look at the difference of successive terms, we have the sequence 1, 1, 2, 2, 3, 3, . . . . So if n is
odd, say n = 2k +1, then an is obtained by adding 1+1+2+2+3+3+ · · ·+k +k = 2tk to the first
term, which is 1. (Here tk stands for the kth triangular number.) So if n is odd, then an = 1 + 2tk
where k = (n − 1)/2. If n is even, say n = 2k, then an = a2k+1 − k = 1 − k + 2tk.

d. This is a Fibonacci-like sequence, with an = an−1 + 2an−2, for n ≥ 3, and a1 = 3, and a2 = 5.

1.1.23. Three possible answers are an = 2n−1, an = (n2 − n + 2)/2, and an = an−1 + 2an−2.

1.1.24. Three possible answers are an = an−1an−2, an = an−1 + 2n − 3, and an = the number of letters in the
nth word of the sentence “If our answer is correct we will join the Antidisestablishmentarianism Society
and boldly state that ‘If our answer is correct we will join the Antidisestablishmentarianism Society and
boldly state....’ ”

1.1.25. This set is exactly the sequence an = n − 100, and hence is countable.

1.1.26. The function f(n) = 5n is a one-to-one correspondence between this set and the set of integers, which
is known to be countable.

1.1.27. One way to show this is to imitate the proof that the set of rational numbers is countable, replacing
a/b with a + b

√
2. Another way is to consider the function f(a + b

√
2) = 2a3b which is a one-to-one map

of this set into the rational numbers, which is known to be countable.

1.1.28. Let A and B be two countable sets. If one or both of the sets are finite, say A is finite, then the listing
a1, a2, . . . , an, b1, b2, . . ., where any bi which is also in A is deleted from the list, demonstrates the count-
ability of A ∪ B. If both sets are infinite, then each can be represented as a sequence: A = {a1, a2, . . .},
and B = {b1, b2, . . .}. Consider the listing a1, b1, a2, b2, a3, b3, . . . and form a new sequence ci as follows.
Let c1 = a1. Given that cn is determined, let cn+1 be the next element in the listing which is different
from each ci with i = 1, 2, . . . , n. Then this sequence is exactly the elements of A ∪ B, which is therefore
countable.

1.1.29. Suppose {Ai} is a countable collection of countable sets. Then each Ai can be represented by a se-
quence, as follows:

A1 = a11 a12 a13 . . .
A2 = a21 a22 a23 . . .
A3 = a31 a32 a33 . . .

...
Consider the listing a11, a12, a21, a13, a22, a31, . . . , in which we first list the elements with subscripts

adding to 2, then the elements with subscripts adding to 3 and so on. Further, we order the elements
with subscripts adding to k in order of the first subscript. Form a new sequence ci as follows. Let c1 =
a1. Given that cn is determined, let cn+1 be the next element in the listing which is different from each

ci with i = 1, 2, . . . , n. Then this sequence is exactly the elements of
∞⋃

i=1

Ai, which is therefore countable.

1.1.30. a. Note that
√

2 ≈ 1.4 = 7/5, so we might guess that
√

2 − 7/5 ≈ 0. If we multiply through by 5 we
expect that 5

√
2 − 7 should be small, and its value is approximately 0.071 which is much less than

1/8 = 0.125. So we may take a = 5 ≤ 8 and b = 7.

Copyright c© 2011 Pearson Education, Inc. Publishing as Addison-Wesley



Chapter 1 5

b. As in part a., note that 3
√

2 = 1.2599 . . . ≈ 1.25 = 5/4, so we investigate 4 3
√

2 − 5 = 0.039 . . . ≤ 1/8.
So we may take a = 4 ≤ 8 and b = 5.

c. Because we know that π ≈ 22/7 we investigate |7π − 22| = 0.0088 . . . ≤ 1/8. So we may take a =
7 ≤ 8 and b = 22.

d. Because e ≈ 2.75 = 11/4 we investigate |4e − 11| = 0.126 . . ., which is too large. A closer approxi-
mation to e is 2.718. We consider the decimal expansions of the multiples of 1/7 and find that 5/7 =
.714 . . ., so e ≈ 19/7. Therefore we investigate |7e − 19| = 0.027 ≤ 1/8. So we may take a = 7 ≤ 8
and b = 19.

1.1.31. a. Note that
√

3 = 1.73 ≈ 7/4, so we might guess that
√

3 − 7/4 ≈ 0. If we multiply through by 4 we
find that |4√3 − 7| = 0.07 . . . < 1/10. So we may take a = 4 ≤ 10 and b = 7.

b. It is helpful to keep the decimal expansions of the multiples of 1/7 in mind in these exercises. Here
3
√

3 = 1.442 . . . and 3/7 = 0.428 . . . so that we have 3
√

3 ≈ 10/7. Then, as in part a., we investigate
|7 3
√

3 − 10| = 0.095 . . . < 1/10. So we may take a = 7 ≤ 10 and b = 10.

c. Because π2 = 9.869 . . . and 6/7 = 0.857 . . ., we have that π2 ≈ 69/7, so we compute |7π2 − 69| =
0.087 . . . < 1/10. So we may take a = 7 ≤ 10 and b = 69.

d. Because e3 = 20.0855 . . . we may take a = 1 and b = 20 to get |1e3 − 20| = 0.855 . . . < 1/10.

1.1.32. For j = 0, 1, 2, . . . , n + 1, consider the n + 2 numbers {jα}, which all lie in the interval 0 ≤ {jα} <
1. We can partition this interval into the n + 1 subintervals (k − 1)/(n + 1) ≤ x < k/(n + 1) for k =
1, . . . , n+1. Because we have n+2 numbers and only n+1 intervals, by the pigeonhole principle, some
interval must contain at least two of the numbers. So there exist integers r and s such that 0 ≤ r < s ≤
n + 1 and |{rα} − {sα}| ≤ 1/(n + 1). Let a = s − r and b = [sα] − [rα]. Because 0 ≤ r < s ≤ n + 1, we
have 1 ≤ a ≤ n. Also, |aα− b| = |(s− r)α− ([sα]− [rα])| = |(sα− [sα])− (rα− [rα]a)| = |{sα}−{rα}| <
1/(n + 1). Therefore, a and b have the desired properties.

1.1.33. The number α must lie in some interval of the form r/k ≤ α < (r + 1)/k. If we divide this interval
into equal halves, then α must lie in one of the halves, so either r/k ≤ α < (2r + 1)/2k or (2r + 1)/2k ≤
α < (r + 1)/k. In the first case we have |α − r/k| < 1/2k, so we take u = r. In the second case we have
|α − (r + 1)/k| < 1/2k, so we take u = r + 1.

1.1.34. Suppose that there are only finitely many positive integers q1, q2, . . . , qn with corresponding integers
p1, p2, . . . , pn such that |α − pi/qi| < 1/q2

i . Because α is irrational, |α − pi/qi| is positive for every i, and
so is |qiα − pi| so we may choose an integer N so large that |qiα − pi| > 1/N for all i. By Dirichlet’s
Approximation Theorem, there exist integers r and s with 1 ≤ s ≤ N such that |sα − r| < 1/N < 1/s,
so that |α− r/s| < 1/s2, and s is not one of the qi. Therefore, we have another solution to the inequality.
So no finite list of solutions can be complete, and we conclude that there must be an infinite number of
solutions.

1.1.35. First we have |√2− 1/1| = 0.414 . . . < 1/12. Second, Exercise 30, part a., gives us |√2− 7/5| < 1/50 <

1/52. Third, observing that 3/7 = 0.428 . . . leads us to try |√2 − 10/7| = 0.014 . . . < 1/72 = 0.0204 . . . .

Fourth, observing that 5/12 = 0.4166 . . . leads us to try |√2−17/12| = 0.00245 . . . < 1/122 = 0.00694 . . . .

1.1.36. First we have | 3
√

5 − 1/1| = 0.7099 . . . < 1/12. Second, | 3
√

5 − 5/3| = 0.04 . . . < 1/32. Third, because
3
√

5 = 1.7099 . . ., we try | 3
√

5 − 17/10| = 0.0099 . . . < 1/102. Likewise, we get a fourth rational number
with | 3

√
5 − 171/100| = 0.000024 . . . < 1/1002. Fifth, consideration of multiples of 1/7 leads to | 3

√
5 −

12/7| = 0.0043 . . . < 1/72.

1.1.37. We may assume that b and q are positive. Note that if q > b, we have |p/q − a/b| = |pb − aq|/qb ≥
1/qb > 1/q2. Therefore, solutions to the inequality must have 1 ≤ q ≤ b. For a given q, there can be
only finitely many p such that the distance between the rational numbers a/b and p/q is less than 1/q2
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(indeed there is at most one.) Therefore there are only finitely many p/q satisfying the inequality.

1.1.38. a. Because n2 is an integer for all n, so is [n2], so the first ten terms of the spectrum sequence are 2, 4,
6, 8, 10, 12, 14, 16, 18, 20.

b. The sequence for n
√

2, rounded, is 1.414, 2.828, 4.242, 5.656, 7.071, 8.485, 9.899, 11.314, 12.728,
14.142. When we apply the floor function to these numbers we get 1, 2, 4, 5, 7, 8, 9, 11, 12, 14 for
the spectrum sequence.

c. The sequence for n(2 +
√

2), rounded, is 3.414, 6.828, 10.24, 13.66, 17.07, 20.48, 23.90, 27.31, 30.73,
34.14. When we apply the floor function to these numbers we get 3, 6, 10, 13, 17, 20, 23, 27, 30, 34,
for the spectrum sequence.

d. The sequence for ne, rounded is 2.718, 5.436, 8.155, 10.87, 13.59, 16.31, 19.03, 21.75, 24.46, 27.18.
When we apply the floor function to these numbers we get 2, 5, 8, 10, 13, 16, 19, 21, 24, 27, for the
spectrum sequence.

e. The sequence for n(1 +
√

5)/2, rounded, is 1.618, 3.236, 4.854, 6.472, 8.090, 9.708, 11.33, 12.94, 14.56,
16.18. When we apply the floor function to these numbers we get 1, 3, 4, 6, 8, 9, 11, 12, 14, 16 for the
spectrum sequence.

1.1.39. a. Because n3 is an integer for all n, so is [n3], so the first ten terms of the spectrum sequence are 3, 6,
9, 12, 15, 18, 21, 24, 27, 30.

b. The sequence for n
√

3, rounded, is 1.732, 3.464, 5.196, 6.928, 8.660, 10.39, 12.12, 13.86, 15.59, 17.32.
When we apply the floor function to these numbers we get 1, 3, 5, 6, 8, 10, 12, 13, 15, 17 for the spec-
trum sequence.

c. The sequence for n(3 +
√

3)/2, rounded, is 2.366, 4.732, 7.098, 9.464, 11.83, 14.20, 16.56, 18.93, 21.29,
23.66. When we apply the floor function to these numbers we get 2, 4, 7, 9, 11, 14, 16, 18, 21, 23 for
the spectrum sequence.

d. The sequence for nπ, rounded is 3.142, 6.283, 9.425, 12.57, 15.71, 18.85, 21.99, 25.13, 28.27, 31.42.
When we apply the floor function to these numbers we get 3, 6, 9, 12, 15, 18, 21, 25, 28, 31, for the
spectrum sequence.

1.1.40. Because α �= β, their decimal expansions must be different. If they differ in digits that are to the left of
the decimal point, then [α] �= [β], so certainly the spectrum sequences are different. Otherwise, suppose
that they differ in the kth position to the right of the decimal. Then [10kα] �= [10kβ], and so the spectrum
sequences will again differ.

1.1.41. Assume that 1/α + 1/β = 1. Note first that for all integers n and m, mα �= nβ, for otherwise, we
solve the equations mα = nβ and 1/α + 1/β = 1 and get rational solutions for α and β, a contradiction.
Therefore the sequences mα and nβ are disjoint.

For an integer k, define N(k) to be the number of elements of the sequences mα and nβ which are
less than k. Now mα < k if and only if m < k/α, so there are exactly [k/α] members of the sequence
mα less than k. Likewise, there are exactly [k/β] members of the sequence nβ less than k. So we have
N(k) = [k/α] + [k/β]. By definition of the greatest integer function, we have k/α− 1 < [k/α] < k/α and
k/β − 1 < [k/β] < k/β, where the inequalities are strict because the numbers are irrational. If we add
these inequalities we get k/α + k/β − 2 < N(k) < k/α + k/β which simplifies to k − 2 < N(k) < k.
Because N(k) is an integer, we conclude that N(k) = k− 1. This shows that there is exactly one member
of the union of the sequences mα and nβ in each interval of the form k− 1 ≤ x < k, and therefore, when
we apply the floor function to each member, exactly one will take on the value k.

Conversely, suppose that α and β are irrational numbers such that 1/α + 1/β �= 1. If 1/α + 1/γ = 1
then we know from the first part of the theorem that the spectrum sequences for α and γ partition the
positive integers. By Exercise 40, we know that the spectrum sequences for β and γ are different, so the
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