INSTRUCTOR SOLUTIONS MANUAL

SEARS \& ZEMANSKY'S

13TH EDITION

A. LEWIS FORD WAYNE ANDERSON

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Publisher:

Executive Editor:
Project Editor
Editorial Manager
Managing Editor:
Production Project Manager:
Production Management
and Compositor:
Executive Marketing Manager:

Jim Smith
Nancy Whilton
Chandrika Madhavan
Laura Kenney
Corinne Benson
Beth Collins

PreMediaGlobal
Kerry Chapman

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

[^0]
CONTENTS

Preface v
Part I Mechanics
Chapter 1 Units, Physical Quantities, and Vectors 1-1
Chapter 2 Motion Along a Straight Line 2-1
Chapter 3 Motion in Two or Three Dimensions 3-1
Chapter 4 Newton's Laws of Motion. 4-1
Chapter 5 Applying Newton's Laws 5-1
Chapter 6 Work and Kinetic Energy 6-1
Chapter 7 Potential Energy and Energy Conservation 7-1
Chapter 8 Momentum, Impulse, and Collisions 8-1
Chapter 9 Rotation of Rigid Bodies 9-1
Chapter 10 Dynamics of Rotational Motion 10-1
Chapter 11 Equilibrium and Elasticity 11-1
Chapter 12 Fluid Mechanics 12-1
Chapter 13 Gravitation 13-1
Chapter 14 Periodic Motion 14-1
Part II Waves/Acoustics
Chapter 15 Mechanical Waves 15-1
Chapter 16 Sound and Hearing 16-1
Part III Thermodynamics
Chapter 17 Temperature and Heat 17-1
Chapter 18 Thermal Properties of Matter 18-1
Chapter 19 The First Law of Thermodynamics 19-1
Chapter 20 The Second Law of Thermodynamics 20-1
Part IV Electromagnetism
Chapter 21 Electric Charge and Electric Field 21-1
Chapter 22 Gauss's Law 22-1
Chapter 23 Electric Potential 23-1
Chapter 24 Capacitance and Dielectrics 24-1
Chapter 25 Current, Resistance, and Electromotive Force 25-1
Chapter 26 Direct-Current Circuits 26-1
Chapter 27 Magnetic Field and Magnetic Forces 27-1
Chapter 28 Sources of Magnetic Field. 28-1
Chapter 29 Electromagnetic Induction 29-1
Chapter 30 Inductance 30-1
Chapter 31 Alternating Current 31-1
Chapter 32 Electromagnetic Waves 32-1
Part V Optics
Chapter 33 The Nature and Propagation of Light. 33-1
Chapter 34 Geometric Optics 34-1
Chapter 35 Interference 35-1
Chapter 36 Diffraction 36-1
Part VI Modern Physics
Chapter 37 Relativity 37-1
Chapter 38 Photons: Light Waves Behaving as Particles 38-1
Chapter 39 Particles Behaving as Waves 39-1
Chapter 40 Quantum Mechanics 40-1
Chapter 41 Atomic Structure 41-1
Chapter 42 Molecules and Condensed Matter 42-1
Chapter 43 Nuclear Physics 43-1
Chapter 44 Particle Physics and Cosmology 44-1

Preface

This Instructor Solutions Manual contains the solutions to all the problems and exercises in University Physics, Thirteenth Edition, by Hugh Young and Roger Freedman.

In preparing this manual, we assumed that its primary users would be college professors; thus the solutions are condensed, and some steps are not shown. Some calculations were carried out to more significant figures than demanded by the input data in order to allow for differences in calculator rounding. In many cases answers were then rounded off. Therefore, you may obtain slightly different results, especially when powers or trig functions are involved.

This edition was constructed from the previous editions authored by Craig Watkins and Mark Hollabaugh, and much of what is here is due to them.

Lewis Ford
Wayne Anderson
Sacramento, CA
© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Units, Physical Quantities and Vectors

1.1. Identify: Convert units from mi to km and from km to ft .

Set Up: $1 \mathrm{in} .=2.54 \mathrm{~cm}, 1 \mathrm{~km}=1000 \mathrm{~m}, 12 \mathrm{in} .=1 \mathrm{ft}, 1 \mathrm{mi}=5280 \mathrm{ft}$.
EXECUTE: (a) $1.00 \mathrm{mi}=(1.00 \mathrm{mi})\left(\frac{5280 \mathrm{ft}}{1 \mathrm{mi}}\right)\left(\frac{12 \mathrm{in} .}{1 \mathrm{ft}}\right)\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}\right)\left(\frac{1 \mathrm{~m}}{10^{2} \mathrm{~cm}}\right)\left(\frac{1 \mathrm{~km}}{10^{3} \mathrm{~m}}\right)=1.61 \mathrm{~km}$
(b) $1.00 \mathrm{~km}=(1.00 \mathrm{~km})\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{10^{2} \mathrm{~cm}}{1 \mathrm{~m}}\right)\left(\frac{1 \mathrm{in} .}{2.54 \mathrm{~cm}}\right)\left(\frac{1 \mathrm{ft}}{12 \mathrm{in}}\right)=3.28 \times 10^{3} \mathrm{ft}$

Evaluate: A mile is a greater distance than a kilometer. There are 5280 ft in a mile but only 3280 ft in a km.
1.2. Identify: Convert volume units from L to in. ${ }^{3}$.

SET UP: $1 \mathrm{~L}=1000 \mathrm{~cm}^{3} .1 \mathrm{in} .=2.54 \mathrm{~cm}$
EXECUTE: $\quad 0.473 \mathrm{~L} \times\left(\frac{1000 \mathrm{~cm}^{3}}{1 \mathrm{~L}}\right) \times\left(\frac{1 \mathrm{in} .}{2.54 \mathrm{~cm}}\right)^{3}=28.9 \mathrm{in} .^{3}$.
Evaluate: 1 in. ${ }^{3}$ is greater than $1 \mathrm{~cm}^{3}$, so the volume in in. ${ }^{3}$ is a smaller number than the volume in cm^{3}, which is $473 \mathrm{~cm}^{3}$.
1.3. Identify: We know the speed of light in $\mathrm{m} / \mathrm{s} . t=d / v$. Convert 1.00 ft to m and t from s to ns.

SET UP: The speed of light is $v=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} .1 \mathrm{ft}=0.3048 \mathrm{~m} .1 \mathrm{~s}=10^{9} \mathrm{~ns}$.
EXECUTE: $\quad t=\frac{0.3048 \mathrm{~m}}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}=1.02 \times 10^{-9} \mathrm{~s}=1.02 \mathrm{~ns}$
Evaluate: In 1.00 s light travels $3.00 \times 10^{8} \mathrm{~m}=3.00 \times 10^{5} \mathrm{~km}=1.86 \times 10^{5} \mathrm{mi}$.
1.4. Identify: Convert the units from g to kg and from cm^{3} to m^{3}.

SET UP: $1 \mathrm{~kg}=1000 \mathrm{~g} .1 \mathrm{~m}=1000 \mathrm{~cm}$.
EXECUTE: $19.3 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \times\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right) \times\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)^{3}=1.93 \times 10^{4} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Evaluate: The ratio that converts cm to m is cubed, because we need to convert cm^{3} to m^{3}.
1.5. Identify: Convert volume units from in. ${ }^{3}$ to L.

SET UP: $1 \mathrm{~L}=1000 \mathrm{~cm}^{3} .1 \mathrm{in} .=2.54 \mathrm{~cm}$.
EXECUTE: $\left(327 \mathrm{in} .^{3}\right) \times(2.54 \mathrm{~cm} / \mathrm{in} .)^{3} \times\left(1 \mathrm{~L} / 1000 \mathrm{~cm}^{3}\right)=5.36 \mathrm{~L}$
Evaluate: The volume is $5360 \mathrm{~cm}^{3} .1 \mathrm{~cm}^{3}$ is less than $1 \mathrm{in}^{3}$, so the volume $\mathrm{in}^{\mathrm{cm}}{ }^{3}$ is a larger number than the volume in in. ${ }^{3}$.
1.6. Identify: Convert ft^{2} to m^{2} and then to hectares.

SET UP: 1.00 hectare $=1.00 \times 10^{4} \mathrm{~m}^{2} .1 \mathrm{ft}=0.3048 \mathrm{~m}$.

EXECUTE: The area is (12.0 acres) $\left(\frac{43,600 \mathrm{ft}^{2}}{1 \text { acre }}\right)\left(\frac{0.3048 \mathrm{~m}}{1.00 \mathrm{ft}}\right)^{2}\left(\frac{1.00 \text { hectare }}{1.00 \times 10^{4} \mathrm{~m}^{2}}\right)=4.86$ hectares.
EVALUATE: Since $1 \mathrm{ft}=0.3048 \mathrm{~m}, 1 \mathrm{ft}^{2}=(0.3048)^{2} \mathrm{~m}^{2}$.
1.7. Identify: Convert seconds to years.

SET UP: 1 billion seconds $=1 \times 10^{9} \mathrm{~s} .1$ day $=24 \mathrm{~h} .1 \mathrm{~h}=3600 \mathrm{~s}$.
EXECUTE: 1.00 billion seconds $=\left(1.00 \times 10^{9} \mathrm{~s}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{1 \text { day }}{24 \mathrm{~h}}\right)\left(\frac{1 \mathrm{y}}{365 \text { days }}\right)=31.7 \mathrm{y}$.
Evaluate: The conversion $1 \mathrm{y}=3.156 \times 10^{7} \mathrm{~s}$ assumes $1 \mathrm{y}=365.24 \mathrm{~d}$, which is the average for one extra day every four years, in leap years. The problem says instead to assume a 365 -day year.
1.8. IDENTIFY: Apply the given conversion factors.

SET UP: 1 furlong $=0.1250 \mathrm{mi}$ and 1 fortnight $=14$ days. 1 day $=24 \mathrm{~h}$.
EXECUTE: $\quad\left(180,000\right.$ furlongs/fortnight) $\left(\frac{0.125 \mathrm{mi}}{1 \text { furlong }}\right)\left(\frac{1 \text { fortnight }}{14 \text { days }}\right)\left(\frac{1 \text { day }}{24 \mathrm{~h}}\right)=67 \mathrm{mi} / \mathrm{h}$
Evaluate: A furlong is less than a mile and a fortnight is many hours, so the speed limit in mph is a much smaller number.
1.9. Identify: Convert miles/gallon to km / L.

SET UP: $1 \mathrm{mi}=1.609 \mathrm{~km} .1$ gallon $=3.788 \mathrm{~L}$.
EXECUTE: (a) 55.0 miles $/$ gallon $=(55.0$ miles $/$ gallon $)\left(\frac{1.609 \mathrm{~km}}{1 \mathrm{mi}}\right)\left(\frac{1 \text { gallon }}{3.788 \mathrm{~L}}\right)=23.4 \mathrm{~km} / \mathrm{L}$.
(b) The volume of gas required is $\frac{1500 \mathrm{~km}}{23.4 \mathrm{~km} / \mathrm{L}}=64.1 \mathrm{~L} \cdot \frac{64.1 \mathrm{~L}}{45 \mathrm{~L} / \operatorname{tank}}=1.4$ tanks.

Evaluate: $1 \mathrm{mi} / \mathrm{gal}=0.425 \mathrm{~km} / \mathrm{L}$. A km is very roughly half a mile and there are roughly 4 liters in a gallon, so $1 \mathrm{mi} / \mathrm{gal} \sim \frac{2}{4} \mathrm{~km} / \mathrm{L}$, which is roughly our result.
1.10. Identify: Convert units.

SET UP: Use the unit conversions given in the problem. Also, $100 \mathrm{~cm}=1 \mathrm{~m}$ and $1000 \mathrm{~g}=1 \mathrm{~kg}$.
EXECUTE: (a) $\left(60 \frac{\mathrm{mi}}{\mathrm{h}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)\left(\frac{5280 \mathrm{ft}}{1 \mathrm{mi}}\right)=88 \frac{\mathrm{ft}}{\mathrm{s}}$
(b) $\left(32 \frac{\mathrm{ft}}{\mathrm{s}^{2}}\right)\left(\frac{30.48 \mathrm{~cm}}{1 \mathrm{ft}}\right)\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
(c) $\left(1.0 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)^{3}\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)=10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

Evaluate: The relations $60 \mathrm{mi} / \mathrm{h}=88 \mathrm{ft} / \mathrm{s}$ and $1 \mathrm{~g} / \mathrm{cm}^{3}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ are exact. The relation
$32 \mathrm{ft} / \mathrm{s}^{2}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ is accurate to only two significant figures.
1.11. Identify: We know the density and mass; thus we can find the volume using the relation density $=$ mass $/$ volume $=m / V$. The radius is then found from the volume equation for a sphere and the result for the volume.
SET UP: Density $=19.5 \mathrm{~g} / \mathrm{cm}^{3}$ and $m_{\text {critical }}=60.0 \mathrm{~kg}$. For a sphere $V=\frac{4}{3} \pi r^{3}$.
EXECUTE: $V=m_{\text {critical }} /$ density $=\left(\frac{60.0 \mathrm{~kg}}{19.5 \mathrm{~g} / \mathrm{cm}^{3}}\right)\left(\frac{1000 \mathrm{~g}}{1.0 \mathrm{~kg}}\right)=3080 \mathrm{~cm}^{3}$.
$r=\sqrt[3]{\frac{3 V}{4 \pi}}=\sqrt[3]{\frac{3}{4 \pi}\left(3080 \mathrm{~cm}^{3}\right)}=9.0 \mathrm{~cm}$.
Evaluate: The density is very large, so the 130-pound sphere is small in size.

1.12. Identify: Convert units.

SET UP: We know the equalities $1 \mathrm{mg}=10^{-3} \mathrm{~g}, 1 \mu \mathrm{~g} 10^{-6} \mathrm{~g}$, and $1 \mathrm{~kg}=10^{3} \mathrm{~g}$.
EXECUTE: (a) $(410 \mathrm{mg} / \mathrm{day})\left(\frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}}\right)\left(\frac{1 \mu \mathrm{~g}}{10^{-6} \mathrm{~g}}\right)=4.10 \times 10^{5} \mu \mathrm{~g} / \mathrm{day}$.
(b) $(12 \mathrm{mg} / \mathrm{kg})(75 \mathrm{~kg})=(900 \mathrm{mg})\left(\frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}}\right)=0.900 \mathrm{~g}$.
(c) The mass of each tablet is $(2.0 \mathrm{mg})\left(\frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}}\right)=2.0 \times 10^{-3} \mathrm{~g} /$ day. The number of tablets required each
day is the number of grams recommended per day divided by the number of grams per tablet:
$\frac{0.0030 \mathrm{~g} / \text { day }}{2.0 \times 10^{-3} \mathrm{~g} / \text { tablet }}=1.5$ tablet $/$ day. Take 2 tablets each day .
(d) $(0.000070 \mathrm{~g} /$ day $)\left(\frac{1 \mathrm{mg}}{10^{-3} \mathrm{~g}}\right)=0.070 \mathrm{mg} /$ day .

Evaluate: Quantities in medicine and nutrition are frequently expressed in a wide variety of units.
1.13. Identify: The percent error is the error divided by the quantity.

SET UP: The distance from Berlin to Paris is given to the nearest 10 km .
EXECUTE: (a) $\frac{10 \mathrm{~m}}{890 \times 10^{3} \mathrm{~m}}=1.1 \times 10^{-3} \%$.
(b) Since the distance was given as 890 km , the total distance should be 890,000 meters. We know the total distance to only three significant figures.
Evaluate: In this case a very small percentage error has disastrous consequences.
1.14. Identify: When numbers are multiplied or divided, the number of significant figures in the result can be no greater than in the factor with the fewest significant figures. When we add or subtract numbers it is the location of the decimal that matters.
SET UP: 12 mm has two significant figures and 5.98 mm has three significant figures.
EXECUTE: (a) $(12 \mathrm{~mm}) \times(5.98 \mathrm{~mm})=72 \mathrm{~mm}^{2}$ (two significant figures)
(b) $\frac{5.98 \mathrm{~mm}}{12 \mathrm{~mm}}=0.50$ (also two significant figures)
(c) 36 mm (to the nearest millimeter)
(d) 6 mm
(e) 2.0 (two significant figures)

Evaluate: The length of the rectangle is known only to the nearest mm, so the answers in parts (c) and (d) are known only to the nearest mm .
1.15. Identify: Use your calculator to display $\pi \times 10^{7}$. Compare that number to the number of seconds in a year. SET UP: $1 \mathrm{yr}=365.24$ days, 1 day $=24 \mathrm{~h}$, and $1 \mathrm{~h}=3600 \mathrm{~s}$.
EXECUTE: (365.24 days/ 1 yr$)\left(\frac{24 \mathrm{~h}}{1 \text { day }}\right)\left(\frac{3600 \mathrm{~s}}{1 \mathrm{~h}}\right)=3.15567 \ldots \times 10^{7} \mathrm{~s} ; \pi \times 10^{7} \mathrm{~s}=3.14159 \ldots \times 10^{7} \mathrm{~s}$
The approximate expression is accurate to two significant figures. The percent error is 0.45%.
Evaluate: The close agreement is a numerical accident.
1.16. IDENTIFY: Estimate the number of people and then use the estimates given in the problem to calculate the number of gallons.
SET Up: Estimate 3×10^{8} people, so 2×10^{8} cars.
EXECUTE: (Number of cars \times miles $/$ car day) $/(\mathrm{mi} / \mathrm{gal})=$ gallons $/$ day

$$
\left(2 \times 10^{8} \mathrm{cars} \times 10000 \mathrm{mi} / \mathrm{yr} / \mathrm{car} \times 1 \mathrm{yr} / 365 \mathrm{days}\right) /(20 \mathrm{mi} / \mathrm{gal})=3 \times 10^{8} \mathrm{gal} / \mathrm{day}
$$

Evaluate: The number of gallons of gas used each day approximately equals the population of the U.S.
1.17. IdENTIFY: Express 200 kg in pounds. Express each of $200 \mathrm{~m}, 200 \mathrm{~cm}$ and 200 mm in inches. Express 200 months in years.

SET UP: A mass of 1 kg is equivalent to a weight of about $2.2 \mathrm{lbs} .1 \mathrm{in} .=2.54 \mathrm{~cm} .1 \mathrm{y}=12$ months.
EXECUTE: (a) 200 kg is a weight of 440 lb . This is much larger than the typical weight of a man.
(b) $200 \mathrm{~m}=\left(2.00 \times 10^{4} \mathrm{~cm}\right)\left(\frac{1 \mathrm{in} \text {. }}{2.54 \mathrm{~cm}}\right)=7.9 \times 10^{3}$ inches. This is much greater than the height of a person.
(c) $200 \mathrm{~cm}=2.00 \mathrm{~m}=79$ inches $=6.6 \mathrm{ft}$. Some people are this tall, but not an ordinary man.
(d) $200 \mathrm{~mm}=0.200 \mathrm{~m}=7.9$ inches. This is much too short.
(e) 200 months $=(200 \mathrm{mon})\left(\frac{1 \mathrm{y}}{12 \mathrm{mon}}\right)=17 \mathrm{y}$. This is the age of a teenager; a middle-aged man is much older than this.
Evaluate: None are plausible. When specifying the value of a measured quantity it is essential to give the units in which it is being expressed.
1.18. Identify: The number of kernels can be calculated as $N=V_{\text {bottle }} / V_{\text {kernel }}$.

SET UP: Based on an Internet search, Iowa corn farmers use a sieve having a hole size of 0.3125 in . \cong 8 mm to remove kernel fragments. Therefore estimate the average kernel length as 10 mm , the width as 6 mm and the depth as 3 mm . We must also apply the conversion factors $1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$ and $1 \mathrm{~cm}=10 \mathrm{~mm}$. EXECUTE: The volume of the kernel is: $V_{\text {kernel }}=(10 \mathrm{~mm})(6 \mathrm{~mm})(3 \mathrm{~mm})=180 \mathrm{~mm}^{3}$. The bottle's volume is: $V_{\text {bottle }}=(2.0 \mathrm{~L})\left[\left(1000 \mathrm{~cm}^{3}\right) /(1.0 \mathrm{~L})\right]\left[(10 \mathrm{~mm})^{3} /(1.0 \mathrm{~cm})^{3}\right]=2.0 \times 10^{6} \mathrm{~mm}^{3}$. The number of kernels is then $N_{\text {kernels }}=V_{\text {bottle }} / V_{\text {kernels }} \approx\left(2.0 \times 10^{6} \mathrm{~mm}^{3}\right) /\left(180 \mathrm{~mm}^{3}\right)=11,000$ kernels.
Evaluate: This estimate is highly dependent upon your estimate of the kernel dimensions. And since these dimensions vary amongst the different available types of corn, acceptable answers could range from 6,500 to 20,000.
1.19. Identify: Estimate the number of pages and the number of words per page.

SET UP: Assuming the two-volume edition, there are approximately a thousand pages, and each page has between 500 and a thousand words (counting captions and the smaller print, such as the end-of-chapter exercises and problems).
ExECUTE: An estimate for the number of words is about 10^{6}.
Evaluate: We can expect that this estimate is accurate to within a factor of 10 .
1.20. IDENTIFY: Approximate the number of breaths per minute. Convert minutes to years and cm^{3} to m^{3} to find the volume in m^{3} breathed in a year.
SET UP: Assume 10 breaths $/ \min .1 \mathrm{y}=(365 \mathrm{~d})\left(\frac{24 \mathrm{~h}}{1 \mathrm{~d}}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{~h}}\right)=5.3 \times 10^{5} \mathrm{~min} .10^{2} \mathrm{~cm}=1 \mathrm{~m}$ so $10^{6} \mathrm{~cm}^{3}=1 \mathrm{~m}^{3}$. The volume of a sphere is $V=\frac{4}{3} \pi r^{3}=\frac{1}{6} \pi d^{3}$, where r is the radius and d is the diameter.

Don't forget to account for four astronauts.
EXECUTE: (a) The volume is $(4)(10$ breaths $/ \mathrm{min})\left(500 \times 10^{-6} \mathrm{~m}^{3}\right)\left(\frac{5.3 \times 10^{5} \mathrm{~min}}{1 \mathrm{y}}\right)=1 \times 10^{4} \mathrm{~m}^{3} / \mathrm{yr}$.
(b) $d=\left(\frac{6 V}{\pi}\right)^{1 / 3}=\left(\frac{6\left[1 \times 10^{4} \mathrm{~m}^{3}\right]}{\pi}\right)^{1 / 3}=27 \mathrm{~m}$

Evaluate: Our estimate assumes that each cm^{3} of air is breathed in only once, where in reality not all the oxygen is absorbed from the air in each breath. Therefore, a somewhat smaller volume would actually be required.
1.21. Identify: Estimate the number of blinks per minute. Convert minutes to years. Estimate the typical lifetime in years.
SET UP: Estimate that we blink 10 times per minute. $1 \mathrm{y}=365$ days. 1 day $=24 \mathrm{~h}, 1 \mathrm{~h}=60 \mathrm{~min}$. Use 80 years for the lifetime.

[^0]: Copyright © 2012, 2008 Pearson Education, Inc., publishing as Addison-Wesley, 1301 Sansome Street, San Francisco, CA 94111. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 1900 E. Lake Ave., Glenview, IL 60025. For information regarding permissions, call (847) 486-2635.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

