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Chapter 1

Arithmetic in Revisited

1.1 The Division Algorithm

1. (a) q = 4, r = 1. (b) q = 0, r = 0. (c) q = −5, r = 3.

2. (a) q = −9, r = 3. (b) q = 15, r = 17. (c) q = 117, r = 11.

3. (a) q = 6, r = 19. (b) q = −9, r = 54. (c) q = 62720, r = 92.

4. (a) q = 15021, r = 132. (b) q = −14940, r = 335. (c) q = 39763, r = 3997.

5. Suppose a = bq + r, with 0 ≤ r < b. Multiplying this equation through by c gives ac = (bc)q + rc.
Further, since 0 ≤ r < b, it follows that 0 ≤ rc < bc. Thus this equation expresses ac as a multiple
of bc plus a remainder between 0 and bc − 1. Since by Theorem 1.1 this representation is unique,
it must be that q is the quotient and rc the remainder on dividing ac by bc.

6. When q is divided by c, the quotient is k, so that q = ck. Thus a = bq + r = b(ck) + r = (bc)k + r.
Further, since 0 ≤ r < b, it follows (since c ≥ 1) than 0 ≤ r < bc. Thus a = (bc)k + r is the unique
representation with 0 ≤ r < bc, so that the quotient is indeed k.

7.

8.

9.

10.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
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Answered in the text. 

Any integer n can be divided by 4 with remainder r equal to 0, 1, 2 or 3. Then either n = 4k,  
4k + 1, 4k + 2 or 4k + 3, where k is the quotient. If n = 4k or 4k + 2 then n is even. Therefore if 
n is odd then n = 4k + 1 or 4k + 3. 

We know that every integer a is of the form 3q, 3q + 1 or 3q + 2 for some q. In the last case
 a = (3q + 2)3 = 27q3 + 54q2 + 36q + 8 = 9k + 8 where k = 3q3 + 6q2 + 4q. Other cases are similar. 

Suppose a = nq + r where 0 ≤ r < n and c = nq' + r' where 0 < r' < n. If r = r' then a – c =  
n(q – q') and k = q – q' is an integer. Conversely, given a – c = nk we can substitute to find:  
(r – r') = n(k – q + q'). Suppose r ≥ r  (the other case is similar). The given inequalities imply 
that 0 ≤ (r – r') < n and it follows that 0 ≤ (k – q + q') < 10000  k – q + q' = 0. 
Therefore r – r' = 0, so that r = r' as claimed. 

3

1 and we conclude that
'

Z
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Arithmetic in Z Revisited

5.

6. The possible remainders on dividing a number by 10 are 0, 1, 2, . . . , 9. If the remainder on dividing
p by 10 is 0, 2, 4, 6, or 8, then p is even; since p > 2, p is divisible by 2 in addition to 1 and itself
and cannot be prime. If the remainder is 5, then since p > 5, p is divisible by 5 in addition to 1
and itself and cannot be prime. That leaves as possible remainders only 1, 3, 7, and 9.

7. Since p | (a + bc) and p | a, we have a = pk and a + bc = pl, so that pk + bc = pl and thus
bc = p(l − k). Thus p | bc. By Theorem 1.5, either p | b or p | c (or both).

8. (a) As polynomials,
xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1).

(b) Since 22n · 3n − 1 = (22 · 3)n − 1 = 12n − 1, by part (a), 12n − 1 is divisible by 12− 1 = 11.

9.

10.

6

2. (a) Since 25 − 1 = 31, and
√

31 < 6, we need only check divisibility by the primes 2, 3, and 5.
Since none of those divides 31, it is prime.

(b) Since 27 − 1 = 127, and
√

127 < 12, we need only check divisibility by the primes 2, 3, 5, 7,
and 11. Since none of those divides 127, it is prime.

(c) 211 − 1 = 2047 = 23 · 89.

3. They are all prime.

4. The pairs are {3, 5}, {5, 7}, {11, 13}, {17, 19}, {29, 31}, {41, 43}, {59, 61}, {71, 73}, {101, 103},
{107, 109}, {137, 139}, {149, 151}, {179, 181}, {191, 193}, {197, 199}.

1.3 Primes and Unique Factorization

1. (a) 24 · 32 · 5 · 7.

(b) −5 · 7 · 67.

(c) 2 · 5 · 4567.

(d) 23 · 3 · 5 · 7 · 11 · 13 · 17.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

(a) Answered in the text. These divisors can be listed as 2j.3k for 0 ≤ j ≤ s and 0 ≤ k ≤ t. 
(b) The number of divisors equals (r + l)(s + l)(t + 1) 

If p is a prime and p = rs then by the definition r, s must lie in {1, –1, p, –p  r = ±1 
or r = ±p and s = p/r = ±1, Conversely if p is not a prime then it has a divisor r not in {1, –1, 
p, –p  p = rs for some integer s. If s equals ±1 or ±p then r = p/s would equal ±p or +1, 
contrary to assumption. This r, s provides an example where the given statement fails. 

Assume first that p > 0. If p is a prime then (a, p) is a positive divisor of p, so that (a, p) = 1 or 
p. If (a, p) = p then p | a. Conversely if p is not a prime it has a divisor d other than ±1 and ±p. 
We may change signs to assume d > 0. Then (p, d) = d ≠ l. Also p |  d since otherwise p | d and 
d = p implies d = p. Then a = d provides an example where the required statement fails. Finally 
if p < 0 apply the argument above to –p. 

. 

}. Then either

}. Then
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11. Since
(1 + 3x)(1 + 6x) = 1 + 3x+ 6x+ 18x2 = 1 + 9x+ 18x2 = 1

in Z9[x], we see that 1 + 3x is a unit. If Z9 were an integral domain, Corollary 4.5 says that all
units are constants. However, Z9 is not an integral domain since for example 3 is a zero divisor.

12.

13.

14.

9.

10.

© 2014 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

8.

15. (a) As the hint suggests, multiply by 1R − ax+ a2x2:

(1R + ax)(1R − ax+ a2x2) = 1R − ax+ a2x2 + ax− a2x2 − a3x3 = 1R − a3x3 = 1R

since a3 = 0R.

Arithmetic in F [x]46

If f(x) = a0 + a1x + ⋅ ⋅ ⋅ + anx
n in [x] and c ∈ , then from the definition: c⋅f(x) = ca0 + ca1x + ⋅ 

⋅ ⋅ +canx
n and f(x)-c = a0c + a1cx + ⋅ ⋅ ⋅ : ancx

n. Therefore, 1R acts as the identity element in [x]. 

Yes. If c ≠ 0 and cd = 0 for some d ≠ 0 in  then these conditions still hold in [x]. 

If x is a unit there is some f(x) ∈  [x]  with x ⋅  f(x) = 1R. By Theorem 4.2 we have 0 = deg 1R  
= deg[x ⋅ f(x)] = deg x + deg f(x) = 1 + deg f(x) ≥ 1. This contradiction shows that no such f(x) 
can exist. 

(We must assume f(x) + g(x) ≠ 0R to have its degree defined here.) Let f(x) = a0 + a1x + ⋅ ⋅ ⋅ + 
anx

n and g(x) = b0 + ⋅ ⋅ ⋅ + bmxm, where an ≠ 0 and bm ≠ 0. Then deg f(x) = n and deg g(x) = m. 
Suppose n < m. 

 From the definition of addition, f(x) + g(x) = (a0 + b0) + ⋅ ⋅ ⋅ + (an + bn)x
n + bn+1x

n+1 + ⋅ ⋅ ⋅ + 
bmxm. Since bm ≠ 0 we conclude that deg[f(x) + g(x)] = m = max{n, m}. Similarly if n > m the 
highest degree term equals anx

n, and the degree is n = max{n, m}. Finally if n = m then f(x) + 
g(x) = (a0 + b0) + ⋅ ⋅ ⋅ + (an + bn )x

n. Therefore the degree is at most n, and it is less when an + 
bn = 0. 

Given (a0 + a1x + ⋅ ⋅ ⋅ + anx
n)⋅g(x) = 0 for some g(x) ≠ 0R in [x]. Write g(x) = b0 + ⋅ ⋅ ⋅ + 

bmxm for some bj   where bm ≠ 0R. Multiplying this out we get a0b0 + ⋅ ⋅ ⋅ + a bn mx"+m = 0R. In 
particular, anbm = 0R and bm ≠ 0R. Therefore an is a zero divisor in . 

(a) In the proof of Theorem 4.4 F can be any commutative ring, except for one place where 

inverses are used: to get the existence of 
1

mb
−

 where bm is the leading coefficient of the 

divisor g(x). If  is a commutative ring, then the division algorithm works in [x] 

provided that the divisor g(x) has leading coefficient which is a unit in , 

(b) Examples are easy to find. For instance consider the constant polynomials f(x) = 1 and 
g(x) = 2. If the division algorithm holds in [x] there must be q(x), r(x) ∈ [x] with 1 = 
2⋅q(x) + r(x) and either r(x) = 0 or deg r(x) < deg 2. Since deg 2 = 0 the second 
condition is impossible, so that r(x) = 0 and 1 = 2⋅q(x). This is impossible for q(x) ∈ [x]. 

R

 ∈ R
R

R

R

R

Summarizing, we have deg[f(x) + g(x)] ≤ max{deg f(x), deg g(x)}, with equality holding whenever 
deg f(x) ≠ deg g(x). 
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Ideals and Quotient Rings

6. kerϕ is the set of elements f(x) ∈ R[x] such that f(2) = 0, i.e., polynomials with 2 as a root. By
Theorem 4.16, this means that x− 2 is a factor of f(x). Thus kerϕ is the set of polynomials that
are multiples of x− 2; that is, kerϕ = (x− 2), the ideal generated by x− 2.

8.

9.

10.

11. (a) To see that f is a homomorphism, note that

f((a+ b
√

2) + (c+ d
√

2)) = f((a+ c) + (b+ d)
√

2) = (a+ c)− (b+ d)
√

2

= (a− b
√

2) + (c− d
√

2) = f(a+ b
√

2) + f(c+ d
√

2)

f((a+ b
√

2)(c+ d
√

2)) = f((ac+ 2bd) + (ad+ bc)
√

2) = (ac+ 2bd)− (ad+ bc)
√

2

= (a− b
√

2)(c− d
√

2) = f(a+ b
√

2)f(c+ d
√

2).

f is clearly surjective since an arbitrary element c+ d
√

2 ∈ Z[
√

2] is f(c− d
√

2).

(b) Suppose f(a + b
√

2) = 0. Then a − b
√

2 = 0 and thus a = b
√

2 for a, b ∈ Z. Since
√

2 is
irrational, this is impossible unless a = b = 0 (otherwise a

b =
√

2). Thus a+ b
√

2 = 0, so that
ker f = {0}. By Theorem 6.11, f is injective. Since it is also a surjective homomorphism, it
follows that f is an isomorphism.

5. Answered in the text. 6 is not an integral domain. 

7. The identity map τ : R → R has kernel (0R). The First Isomorphism Theorem implies that  
R/(0R) ≅  R. 

First check that π((r, s) + (r', s')) = π(r + r', s + s') = r + r' = π(r, s) + π(r', s') and 
similarly for products, so π is a homomorphism. It is surjective since r = π(r, 0S). The kernel 
K equals {(0R, s) | s ∈ S}. The map ρ : K → S defined by ρ(0R, s) = s shows that K ≅  S. 

(a) For subtraction: 
−⎛ ⎞ ⎛ ⎞⎛ ⎞

− =⎜ ⎟ ⎜ ⎟⎜ ⎟ − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0 ' 0 ' 0
.

' ' ' '

a a a a

b c b c b b c c
 For multiplication: 

  
⎛ ⎞ ⎛ ⎞⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0 ' 0 ' 0
.

' ' ' ' '

a a aa

b c b c ba cb cc
 Therefore R is a subring of M( ) and R contains the 

  identity matrix. 

 (b) The map f is surjective since for every a ∈ : 
⎛ ⎞

=⎜ ⎟
⎝ ⎠

0 .
0 0
af a  The homomorphism 

properties are easy to check by glancing at the formulas for subtraction and 

multiplication in part (a). 

(c) The kernel equals 
⎧ ⎫⎛ ⎞⎪ ⎪∈⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

0 0
: , .b c

b c
Z  

(a) If s, t ∈ f(I) then s = f(a) and t = f(b) for some a, b ∈ I. Then s + t = f(a) + f(b) = f(a 
+ b) ∈ f(I). For any u ∈ S there exists r ∈ R with u = f(r), using the surjectivity. Then 
us = f(r)f(a) = f(ar) ∈ f(I). Similarly su lies in f(I). Therefore f(I) is an ideal. 

(b) There are many examples. The inclusion map ϕ :  →  is a homomorphism of fields. The 
field  is an ideal in itself, but ϕ( ) =  is not an ideal in . 

76
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37. Since (k, n) = 1, we may choose r and s such that rk+ sn = 1. Then since a has order n, we know
that an = e, so that

a = a1 = ark+sn = arkasn = (ak)r(an)s = (ak)res = (ak)r.

But ak ∈ H, so that (ak)r = a ∈ H.

31. If f, g ∈ K then (fg)(T1) = f(g(T1)) = f(T1) = T1 and, by the definition of “inverse function”, 
f 

–1(T1) = T1. Hence K is a subgroup. By the definitions H ⊆ K. If a, b ∈ T1 are distinct 
elements let α ∈ A(T) be defined by setting α(a) = b, α(b) = a and α(x) = x for every x ≠ a, 
b. Then α ∈ K but α ∉ H. 

 

32. Applying the hypothesis to the element x–1, note that xHx–1 ⊆ H. Multiplying by x–1 on the 
left and x on the right we get H ⊆ x–1Hx. Hence these sets are equal. 

33. If g, h ∈ C(a) then ga = ag and ha = ah. Then ag–1 = g–1a and (gh)a = a(gh). Therefore C(a) 
is a subgroup. 

 
34. g ∈ Z(G) if and only if ag = ga for every a ∈ G. This occurs if and only if g ∈ C(a) for every 

a ∈ G. Equivalently, g ∈ ∩ C(a). 
 
35. a ∈ Z(G) if and only if ax = xa for every x ∈ G. This occurs if and only if every x ∈ G lies in 

C(a). Equivalently, C(a) = G. 

36. False. U8 and S3 are counter examples. 

 
38. (a) Up consists of all the nonzero elements of p (by Corollary 7.3), so |Up| = p – 1. By 

Theorem 7.15 the group Up is cyclic, so Up = 〈g〉 for some generator g of order p – 1. If 
b ∈ Up express b = gk  for some integer k and note that bp – 1 = (gk)p – 1 = (gp – 1)k = 1. 

  (b) If (a, p) = 1 then [a] ∈ p is nonzero and [a]p – 1 = [1] by part (a). This means that  
[a]p – 1 ≡ [1] (mod p) and consequently ap ≡ a (mod p). If (a, p) > 1 then p | a and a = 0 
(mod p). In this case it is clear that ap ≡ a (mod p). 

 
39. If x, y ∈ NH then x–lHx = H and y–1Hy = H. The first equation implies that H = xHx–1. Also 

we have (xy)–lH(xy) = y–l(x–1Hx)y = y–lHy = H. Therefore x–1 and xy lie in NH so that NH is a 
subgroup. Since H is a subgroup we know that hH = Hh = H for every h ∈ H. It follows that  
H ⊆ NH. 

 

40. ( )( ) ( )   0 0 01 1    1
a b a b aa aa b+=' ' ' '  so the set H is closed. Also ( ) ( )

1

  0 01   1
a b a ab− −=  since a2 = 1. 

Therefore H is a subgroup. 

 
41. Answered in the text. 
 
42. If a ∈ Un we must first check that the statement “a ≡ 1 (mod k) ” makes sense. The element 

a is actually a class [r] for some r ∈ �. But the same class a can be represented in other ways, 
say a = [s] for s ∈ �. If r ≡ 1 (mod k) does it follow that s ≡ 1 (mod k) ? Yes, because [r] = 
[s] so that r ≡ s (mod n) and n | (r – s). Now since k | n conclude that k | (r – s) and r ≡ s 
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21. By Exercise 8.4.22, a group of order pn is not simple, provided p is prime and n > 1. Groups of 
order p are abelian simple groups so they don’t count here. A group of order pq where p < q has a 
normal Sylow q-subgroup as in Corollary 8.18. Groups of order p2q and pqr are not simple, by 
Corollary 8.2.1 and Exercise 8.3.25. The remaining numbers less that 60 not included in one of 
these cases are: 24, 36, 40, 48, 54 and 56. By Exercise 16: If G is simple and has a subgroup of 
index n, then |G| divides n!. If |G| = 24, 36, 48 or 54, one of the Sylow subgroups has a small 
index, contrary to this restriction on |G|. If |G| = 40, the Third Sylow Theorem implies that the 
Sylow 5-subgroup is normal. The case |G| = 56 is done in the second Example after Theorem 8.17. 

4 Topics in Group Theory
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1 Algebraic Coding Theory

14. (a) Let xn − 1 = g(x)f(x) so that deg f(x) = n – m = k. A typical element of C is [h(x)g(x)] for 
some polynomial h(x). Divide h by f to obtain: h(x) = f(x)q(x) + s(x) for some q(x), s(x) 
where either s(x) = 0 or deg s(x) < k. This condition says exactly that s(x) ε J. Multiplying 
by g(x), conclude that h(x)g(x) = (xn – l)q(x) + s(x)g(x) and [h(x)g(x)] = [s(x)g(x)]. 

 (b) Claim. ϕ  : J → C defined ϕ  (s(x)) = [s(x)g(x)] is bijective. 

  Therefore |C| = |J| = 2k and C is an (n, k) code. 

 
15. (a) The received word r(x) and the codeword c(x) differ at exactly the two places xi and xj.  
 (b) By definition of g(x) we have g(αk) = 0 for k = l, 2, 3, 4. Since c(x) is a codeword it is a 

multiple of g(x) and the claim follows from (a). 
 (c) Multiplying out D(x) yields the first formula. By (b) we know that ai + aj = r(α). 
 (d) r(a)3 = (αi + αj)3 = α3i + α3j + αi+j(αi + αj) = r(α3) + αi+jr(α). Therefore 

2 3( ) ( )/ ( ).i j r r rα α α α+ = +  By the Freshman’s Dream 10.24, r(α)2 = r(α2). 
 

16. A (7, 4) Hamming code is one whose parity check matrix H is a 7 × 3 matrix whose rows are 
the 7 distinct nonzero elements of B(3). The BCH code constructed with t = 1 and r = 3 has 
n = 2r−1 = 7 and field K of 2r = 8 elements. For example 3

2[ ]/(    1)K x x x= + +  has 
generator α = [x] with minimal polynomial m1(x) = x3 + x + 1. As before the minimal 
polynomial for α2 is also m1(x), so that g(x) = x3 + x + 1. Then m = deg g(x) = 3 and k = n 
– m = 4. Therefore we have a (7, 4) BCH code. By the theory of BCH codes this one corrects 
single errors. Then by Exercise 16.2.15, the parity check matrix H must have rows which are 
distinct and nonzero. However, this H is a 7 × 3 matrix so that all 7 of the nonzero elements 
of B(3) must occur as rows of H, and we have a Hamming code.  

 We can identify H more explicitly. Recall that  7
2[ ( )] [ ]/( 1)a x x x∈ −  is a codeword when  

g(x) | a(x). Factor x7 – 1 = g(x)f(x) and compute that f(x) = x4 + x2 + x + 1. Then [a(x)] is a 
codeword if and only if x7 – 1 divides a(x)f(x), which says that [a(x)]·[f(x)] = [0]. This gives a 

“parity check” criterion for codewords. To change this criterion into a matrix condition, 

consider multiplication by f(x), xf(x), x2f(x), . . . But x3f(x) can be expressed in terms of the 

earlier terms (mod x7 – 1). Then the parity check matrix H has columns f(x), xf(x), x2f(x). 
(View them as columns since we want to multiply them by rows). Writing out these columns 

yields 

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1 0 0

1 1 0

1 1 1

0 1 1H

1 0 1

0 1 0

0 0 1

.

 This does correspond to a (7, 4) Hamming code. 

Proof. ϕ  is surjective, by part (a). It is easy to check that φ is a homomorphism of additive 
groups. If s(x) is in the kernel then [s(x)g(x)] = [0] so that s(x)g(x) = (xn – 1)Q(x) for some 
Q(x). Cancel g(x) to deduce that s(x) = f(x)Q(x). Since deg f(x) = k and s(x) ε J this implies 
s(x) = 0. Hence φ is injective. 
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