THIRD EDITION

AdvancedEngineering
 Mathematics Dennis G. Zill Michael R. Cullen

Table of Contents

Part I Ordinary Differential Equations

1 Introduction to Differential Equations 1
2 First-Order Differential Equations 22
3 Higher-Order Differential Equations 99
4 The Laplace Transform 198
5 Series Solutions of Linear Differential Equations 252
6 Numerical Solutions of Ordinary Differential Equations 317
Part II Vectors, Matrices, and Vector Calculus
7 Vectors 339
8 Matrices 373
9 Vector Calculus 438
Part III Systems of Differential Equations
10 Systems of Linear Differential Equations 551
11 Systems of Nonlinear Differential Equations 604
Part IV Fourier Series and Partial Differential Equations12 Orthogonal Functions and Fourier Series634
13 Boundary-Value Problems in Rectangular Coordinates 680
14 Boundary-Value Problems in Other Coordinate Systems 755
15 Integral Transform Method 793
16 Numerical Solutions of Partial Differential Equations 832

Part V Complex Analysis

17 Functions of a Complex Variable 854
18 Integration in the Complex Plane 877
19 Series and Residues 896
20 Conformal Mappings 919
Appendices
Appendix II Gamma function 942
Projects
3.7 Road Mirages 944
3.10 The Ballistic Pendulum 946
8.1 Two-Ports in Electrical Circuits 947
8.2 Traffic Flow 948
8.15 Temperature Dependence of Resistivity 949
9.16 Minimal Surfaces 950
14.3 The Hydrogen Atom 952
15.4 The Uncertainity Inequality in Signal Processing 955
15.4 Fraunhofer Diffraction by a Circular Aperture 958
16.2 Instabilities of Numerical Methods 960

Setting $h(0)=2$ we find $c_{1}=8 \sqrt{2} / 5$, so that

$$
\begin{aligned}
\frac{2}{5} h^{5 / 2} & =-\frac{1}{7680} t+\frac{8 \sqrt{2}}{5} \\
h^{5 / 2} & =4 \sqrt{2}-\frac{1}{3072} t
\end{aligned}
$$

and

$$
h=\left(4 \sqrt{2}-\frac{1}{3072} t\right)^{2 / 5}
$$

In this case $h(4 \mathrm{hr})=h(14,400 \mathrm{~s})=11.8515$ inches and $h(5 \mathrm{hr})=h(18,000 \mathrm{~s})$ is not a real number. Using a CAS to solve $h(t)=0$, we see that the tank runs dry at $t \approx 17,378 \mathrm{~s} \approx 4.83 \mathrm{hr}$. Thus, this particular conical water clock can only measure time intervals of less than 4.83 hours.
34. If we let r_{h} denote the radius of the hole and $A_{w}=\pi[f(h)]^{2}$, then the differential equation $d h / d t=-k \sqrt{h}$, where $k=c A_{h} \sqrt{2 g} / A_{w}$, becomes

$$
\frac{d h}{d t}=-\frac{c \pi r_{h}^{2} \sqrt{2 g}}{\pi[f(h)]^{2}} \sqrt{h}=-\frac{8 c r_{h}^{2} \sqrt{h}}{[f(h)]^{2}} .
$$

For the time marks to be equally spaced, the rate of change of the height must be a constant; that is, $d h / d t=-a$. (The constant is negative because the height is decreasing.) Thus

$$
-a=-\frac{8 c r_{h}^{2} \sqrt{h}}{[f(h)]^{2}}, \quad[f(h)]^{2}=\frac{8 c r_{h}^{2} \sqrt{h}}{a}, \quad \text { and } \quad r=f(h)=2 r_{h} \sqrt{\frac{2 c}{a}} h^{1 / 4}
$$

Solving for h, we have

$$
h=\frac{a^{2}}{64 c^{2} r_{h}^{4}} r^{4}
$$

The shape of the tank with $c=0.6, a=2 \mathrm{ft} / 12 \mathrm{hr}=1 \mathrm{ft} / 21,600 \mathrm{~s}$, and $r_{h}=1 / 32(12)=1 / 384$ is shown in the above figure.
35. From $d x / d t=k_{1} x(\alpha-x)$ we obtain

$$
\left(\frac{1 / \alpha}{x}+\frac{1 / \alpha}{\alpha-x}\right) d x=k_{1} d t
$$

so that $x=\alpha c_{1} e^{\alpha k_{1} t} /\left(1+c_{1} e^{\alpha k_{1} t}\right)$. From $d y / d t=k_{2} x y$ we obtain

$$
\ln |y|=\frac{k_{2}}{k_{1}} \ln \left|1+c_{1} e^{\alpha k_{1} t}\right|+c \quad \text { or } \quad y=c_{2}\left(1+c_{1} e^{\alpha k_{1} t}\right)^{k_{2} / k_{1}} .
$$

36. In tank A the salt input is

$$
\left(7 \frac{\text { gal }}{\min }\right)\left(2 \frac{\mathrm{lb}}{\mathrm{gal}}\right)+\left(1 \frac{\mathrm{gal}}{\mathrm{~min}}\right)\left(\frac{x_{2}}{100} \frac{\mathrm{lb}}{\mathrm{gal}}\right)=\left(14+\frac{1}{100} x_{2}\right) \frac{\mathrm{lb}}{\min } .
$$

The salt output is

$$
\left(3 \frac{\text { gal }}{\min }\right)\left(\frac{x_{1}}{100} \frac{\mathrm{lb}}{\text { gal }}\right)+\left(5 \frac{\text { gal }}{\mathrm{min}}\right)\left(\frac{x_{1}}{100} \frac{\mathrm{lb}}{\mathrm{gal}}\right)=\frac{2}{25} x_{1} \frac{\mathrm{lb}}{\min } .
$$

In tank B the salt input is

$$
\left(5 \frac{\mathrm{gal}}{\mathrm{~min}}\right)\left(\frac{x_{1}}{100} \frac{\mathrm{lb}}{\mathrm{gal}}\right)=\frac{1}{20} x_{1} \frac{\mathrm{lb}}{\min } .
$$

The salt output is

$$
\left(1 \frac{\text { gal }}{\min }\right)\left(\frac{x_{2}}{100} \frac{\mathrm{lb}}{\mathrm{gal}}\right)+\left(4 \frac{\mathrm{gal}}{\min }\right)\left(\frac{x_{2}}{100} \frac{\mathrm{lb}}{\mathrm{gal}}\right)=\frac{1}{20} x_{2} \frac{\mathrm{lb}}{\min } .
$$

(e) For each v_{0} we want to find the smallest value of t for which $r(t)= \pm 20$. Whether we look for $r(t)=-20$ or $r(t)=20$ is determined by looking at the graphs in part (d). The total times that the bead stays on the rod is shown in the table below.

v_{0}	0	10	15	16.1	17
r	-20	-20	-20	20	20
t	1.55007	2.35494	3.43088	6.11627	4.22339

When $v_{0}=16$ the bead never leaves the rod.
53. Unlike the derivation given in Section 3.8 in the text, the weight $m g$ of the mass m does not appear in the net force since the spring is not stretched by the weight of the mass when it is in the equilibrium position (i.e. there is no $m g-k s$ term in the net force). The only force acting on the mass when it is in motion is the restoring force of the spring. By Newton's second law,

$$
m \frac{d^{2} x}{d t^{2}}=-k x \quad \text { or } \quad \frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=0 .
$$

54. The force of kinetic friction opposing the motion of the mass in μN, where μ is the coefficient of sliding friction and N is the normal component of the weight. Since friction is a force opposite to the direction of motion and since N is pointed directly downward (it is simply the weight of the mass), Newton's second law gives, for motion to the right $\left(x^{\prime}>0\right)$,

$$
m \frac{d^{2} x}{d t^{2}}=-k x-\mu m g
$$

and for motion to the left $\left(x^{\prime}<0\right)$,

$$
m \frac{d^{2} x}{d t^{2}}=-k x+\mu m g
$$

Traditionally, these two equations are written as one expression

$$
m \frac{d^{2} x}{d t^{2}}+f_{x} \operatorname{sgn}\left(x^{\prime}\right)+k x=0
$$

where $f_{k}=\mu m g$ and

$$
\operatorname{sgn}\left(x^{\prime}\right)=\left\{\begin{aligned}
1, & x^{\prime}>0 \\
-1, & x^{\prime}<0
\end{aligned}\right.
$$

5.3 Special Functions

Letting $t=\frac{2}{3} \alpha x^{3 / 2}$ or $\alpha x^{3 / 2}=\frac{3}{2} t$ this differential equation becomes

$$
\frac{3}{2} \frac{\alpha}{t}\left[t^{2} w^{\prime \prime}(t)+t w^{\prime}(t)+\left(t^{2}-\frac{1}{9}\right) w(t)\right]=0, \quad t>0
$$

35. (a) By Problem 34, a solution of Airy's equation is $y=x^{1 / 2} w\left(\frac{2}{3} \alpha x^{3 / 2}\right)$, where

$$
w(t)=c_{1} J_{1 / 3}(t)+c_{2} J_{-1 / 3}(t)
$$

is a solution of Bessel's equation of order $\frac{1}{3}$. Thus, the general solution of Airy's equation for $x>0$ is

$$
y=x^{1 / 2} w\left(\frac{2}{3} \alpha x^{3 / 2}\right)=c_{1} x^{1 / 2} J_{1 / 3}\left(\frac{2}{3} \alpha x^{3 / 2}\right)+c_{2} x^{1 / 2} J_{-1 / 3}\left(\frac{2}{3} \alpha x^{3 / 2}\right)
$$

(b) Airy's equation, $y^{\prime \prime}+\alpha^{2} x y=0$, has the form of (18) in the text with

$$
\begin{aligned}
1-2 a=0 & \Longrightarrow a=\frac{1}{2} \\
2 c-2=1 & \Longrightarrow c=\frac{3}{2} \\
b^{2} c^{2}=\alpha^{2} & \Longrightarrow b=\frac{2}{3} \alpha \\
a^{2}-p^{2} c^{2}=0 & \Longrightarrow p=\frac{1}{3}
\end{aligned}
$$

Then, by (19) in the text,

$$
y=x^{1 / 2}\left[c_{1} J_{1 / 3}\left(\frac{2}{3} \alpha x^{3 / 2}\right)+c_{2} J_{-1 / 3}\left(\frac{2}{3} \alpha x^{3 / 2}\right)\right] .
$$

36. The general solution of the differential equation is

$$
y(x)=c_{1} J_{0}(\alpha x)+c_{2} Y_{0}(\alpha x) .
$$

In order to satisfy the conditions that $\lim _{x \rightarrow 0^{+}} y(x)$ and $\lim _{x \rightarrow 0^{+}} y^{\prime}(x)$ are finite we are forced to define $c_{2}=0$. Thus, $y(x)=c_{1} J_{0}(\alpha x)$. The second boundary condition, $y(2)=0$, implies $c_{1}=0$ or $J_{0}(2 \alpha)=0$. In order to have a nontrivial solution we require that $J_{0}(2 \alpha)=0$. From Table 5.1, the first three positive zeros of J_{0} are found to be

$$
2 \alpha_{1}=2.4048, \quad 2 \alpha_{2}=5.5201, \quad 2 \alpha_{3}=8.6537
$$

and so $\alpha_{1}=1.2024, \alpha_{2}=2.7601, \alpha_{3}=4.3269$. The eigenfunctions corresponding to the eigenvalues $\lambda_{1}=\alpha_{1}^{2}$, $\lambda_{2}=\alpha_{2}^{2}, \lambda_{3}=\alpha_{3}^{2}$ are $J_{0}(1.2024 x), J_{0}(2.7601 x)$, and $J_{0}(4.3269 x)$.
37. (a) The differential equation $y^{\prime \prime}+(\lambda / x) y=0$ has the form of (18) in the text with

$$
\begin{aligned}
1-2 a=0 & \Longrightarrow a=\frac{1}{2} \\
2 c-2=-1 & \Longrightarrow c=\frac{1}{2} \\
b^{2} c^{2}=\lambda & \Longrightarrow b=2 \sqrt{\lambda} \\
a^{2}-p^{2} c^{2}=0 & \Longrightarrow p=1 .
\end{aligned}
$$

Then, by (19) in the text,

$$
y=x^{1 / 2}\left[c_{1} J_{1}(2 \sqrt{\lambda x})+c_{2} Y_{1}(2 \sqrt{\lambda x})\right] .
$$

(b) We first note that $y=J_{1}(t)$ is a solution of Bessel's equation, $t^{2} y^{\prime \prime}+t y^{\prime}+\left(t^{2}-1\right) y=0$, with $\nu=1$. That is,

$$
t^{2} J_{1}^{\prime \prime}(t)+t J_{1}^{\prime}(t)+\left(t^{2}-1\right) J_{1}(t)=0
$$

9.11 Double Integrals in Polar Coordinates

20. Solving $1=2 \sin 2 \theta$, we obtain $\sin 2 \theta=1 / 2$ or $\theta=\pi / 12$ and $\theta=5 \pi / 12$.

$$
\begin{aligned}
I_{y} & =\int_{\pi / 12}^{5 \pi / 12} \int_{1}^{2 \sin 2 \theta} x^{2} \sec ^{2} \theta r d r d \theta=\int_{\pi / 12}^{5 \pi / 12} \int_{1}^{2 \sin 2 \theta} r^{3} d r d \theta \\
& =\left.\int_{\pi / 12}^{5 \pi / 12} \frac{1}{4} r^{4}\right|_{1} ^{2 \sin 2 \theta} d \theta=4 \int_{\pi / 12}^{5 \pi / 12} \sin ^{4} 2 \theta d \theta=\left.2\left(\frac{3}{4} \theta-\frac{1}{4} \sin 4 \theta+\frac{1}{32} \sin 8 \theta\right)\right|_{\pi / 12} ^{5 \pi / 12} \\
& =2\left[\left(\frac{5 \pi}{16}+\frac{\sqrt{3}}{8}-\frac{\sqrt{3}}{64}\right)-\left(\frac{\pi}{16}-\frac{\sqrt{3}}{8}+\frac{\sqrt{3}}{64}\right)\right]=\frac{8 \pi+7 \sqrt{3}}{16}
\end{aligned}
$$

21. From the solution to Problem $17, I_{x}=k \pi a^{4} / 4$. By symmetry, $I_{y}=I_{x}$. Thus $I_{0}=k \pi a^{4} / 2$.

22. The density is $\rho=k r$.

$$
\begin{aligned}
I_{0} & =\int_{0}^{\pi} \int_{0}^{\theta} r^{2}(k r) r d r d \theta=k \int_{0}^{\pi} \int_{0}^{\theta} r^{4} d r d \theta=\left.k \int_{0}^{\pi} \frac{1}{5} r^{5}\right|_{0} ^{\theta} d \theta \\
& =\frac{1}{5} k \int_{0}^{\pi} \theta^{5} d \theta=\left.\frac{1}{5} k\left(\frac{1}{6} \theta^{6}\right)\right|_{0} ^{\pi}=\frac{k \pi^{6}}{30}
\end{aligned}
$$

23. The density is $\rho=k / r$.

$$
I_{0}=\int_{1}^{3} \int_{0}^{1 / r} r^{2} \frac{k}{r} r d \theta d r=k \int_{1}^{3} \int_{0}^{1 / r} r^{2} d \theta d r=k \int_{1}^{3} r^{2}\left(\frac{1}{r}\right) d r=\left.k\left(\frac{1}{2} r^{2}\right)\right|_{1} ^{3}=4 k
$$

24. $I_{0}=\int_{0}^{\pi} \int_{0}^{2 a \cos \theta} r^{2} k r d r d \theta=\left.k \int_{0}^{\pi} \frac{1}{4} r^{4}\right|_{0} ^{2 a \cos \theta} d \theta=4 k a^{4} \int_{0}^{\pi} \cos ^{4} \theta d \theta$

$$
=\left.4 k a^{4}\left(\frac{3}{8} \theta+\frac{1}{4} \sin 2 \theta+\frac{1}{32} \sin 4 \theta\right)\right|_{0} ^{\pi}=4 k a^{4}\left(\frac{3 \pi}{8}\right)=\frac{3 k \pi a^{4}}{2}
$$

25. $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x=\int_{0}^{\pi} \int_{0}^{3}|r| r d r d \theta=\left.\int_{0}^{\pi} \frac{1}{3} r^{3}\right|_{0} ^{3} d \theta=9 \int_{0}^{\pi} d \theta=9 \pi$

26. $\int_{0}^{\sqrt{2} / 2} \int_{y}^{\sqrt{1-y^{2}}} \frac{y^{2}}{\sqrt{x^{2}+y^{2}}} d x d y=\int_{0}^{\pi / 4} \int_{0}^{1} \frac{r^{2} \sin ^{2} \theta}{|r|} r d r d \theta$

$$
=\int_{0}^{\pi / 4} \int_{0}^{1} r^{2} \sin ^{2} \theta d r d \theta=\left.\int_{0}^{\pi / 4} \frac{1}{3} r^{3} \sin ^{2} \theta\right|_{0} ^{1} d \theta=\frac{1}{3} \int_{0}^{\pi / 4} \sin ^{2} \theta d \theta
$$

$$
=\left.\frac{1}{3}\left(\frac{1}{2} \theta-\frac{1}{4} \sin 2 \theta\right)\right|_{0} ^{\pi / 4}=\frac{\pi-2}{24}
$$

27. $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} e^{x^{2}+y^{2}} d x d y=\int_{0}^{\pi / 2} \int_{0}^{1} e^{r^{2}} r d r d \theta=\left.\int_{0}^{\pi / 2} \frac{1}{2} e^{r^{2}}\right|_{0} ^{1} d \theta$

$$
=\frac{1}{2} \int_{0}^{\pi / 2}(e-1) d \theta=\frac{\pi(e-1)}{4}
$$

10.5 Matrix Exponential

$$
=c_{1}\binom{\cos t+\sin t}{-2 \sin t} e^{-t}+c_{2}\binom{\sin t}{\cos t-\sin t} e^{-t}
$$

19. The eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=6$. This leads to the system

$$
\begin{aligned}
e^{t} & =b_{0}+b_{1} \\
e^{6 t} & =b_{0}+6 b_{1},
\end{aligned}
$$

which has the solution $b_{0}=\frac{6}{5} e^{t}-\frac{1}{5} e^{6 t}$ and $b_{1}=-\frac{1}{5} e^{t}+\frac{1}{5} e^{6 t}$. Then

$$
e^{\mathbf{A} t}=b_{0} \mathbf{I}+b_{1} \mathbf{A}=\left(\begin{array}{ll}
\frac{4}{5} e^{t}+\frac{1}{5} e^{6 t} & \frac{2}{5} e^{t}-\frac{2}{5} e^{6 t} \\
\frac{2}{5} e^{t}-\frac{2}{5} e^{6 t} & \frac{1}{5} e^{t}+\frac{4}{5} e^{6 t}
\end{array}\right)
$$

The general solution of the system is then

$$
\begin{aligned}
\mathbf{X}=e^{\mathbf{A} t} \mathbf{C} & =\left(\begin{array}{cc}
\frac{4}{5} e^{t}+\frac{1}{5} e^{6 t} & \frac{2}{5} e^{t}-\frac{2}{5} e^{6 t} \\
\frac{2}{5} e^{t}-\frac{2}{5} e^{6 t} & \frac{1}{5} e^{t}+\frac{4}{5} e^{6 t}
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =c_{1}\binom{\frac{4}{5}}{\frac{2}{5}} e^{t}+c_{1}\binom{\frac{1}{5}}{-\frac{2}{5}} e^{6 t}+c_{2}\binom{\frac{2}{5}}{\frac{1}{5}} e^{t}+c_{2}\binom{-\frac{2}{5}}{\frac{4}{5}} e^{6 t} \\
& =\left(\frac{2}{5} c_{1}+\frac{1}{5} c_{2}\right)\binom{2}{1} e^{t}+\left(\frac{1}{5} c_{1}-\frac{2}{5} c_{2}\right)\binom{1}{-2} e^{6 t} \\
& =c_{3}\binom{2}{1} e^{t}+c_{4}\binom{1}{-2} e^{6 t} .
\end{aligned}
$$

20. The eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=3$. This leads to the system

$$
\begin{aligned}
& e^{2 t}=b_{0}+2 b_{1} \\
& e^{3 t}=b_{0}+3 b_{1}
\end{aligned}
$$

which has the solution $b_{0}=3 e^{2 t}-2 e^{3 t}$ and $b_{1}=-e^{2 t}+e^{3 t}$. Then

$$
e^{\mathbf{A} t}=b_{0} \mathbf{I}+b_{1} \mathbf{A}=\left(\begin{array}{cc}
2 e^{2 t}-e^{3 t} & -2 e^{2 t}+2 e^{3 t} \\
e^{2 t}-e^{3 t} & -e^{2 t}+2 e^{3 t}
\end{array}\right)
$$

The general solution of the system is then

$$
\begin{aligned}
\mathbf{X}=e^{\mathbf{A} t} \mathbf{C} & =\left(\begin{array}{cc}
2 e^{2 t}-e^{3 t} & -2 e^{2 t}+2 e^{3 t} \\
e^{2 t}-e^{3 t} & -e^{2 t}+2 e^{3 t}
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =c_{1}\binom{2}{1} e^{2 t}+c_{1}\binom{-1}{-1} e^{3 t}+c_{2}\binom{-2}{-1} e^{2 t}+c_{2}\binom{2}{2} e^{3 t} \\
& =\left(c_{1}-c_{2}\right)\binom{2}{1} e^{2 t}+\left(-c_{1}+2 c_{2}\right)\binom{1}{1} e^{3 t} \\
& =c_{3}\binom{2}{1} e^{2 t}+c_{4}\binom{1}{1} e^{3 t} .
\end{aligned}
$$

15.2 Applications of the Laplace Transform

EXERCISES 15.2

Applications of the Laplace Transform

1. The boundary-value problem is

$$
\begin{aligned}
a^{2} \frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial^{2} u}{\partial t^{2}}, \quad 0<x<L, \quad t>0 \\
u(0, t) & =0, \quad u(L, t)=0, \quad t>0 \\
u(x, 0) & =A \sin \frac{\pi}{L} x,\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=0
\end{aligned}
$$

Transforming the partial differential equation gives

$$
\frac{d^{2} U}{d x^{2}}-\left(\frac{s}{a}\right)^{2} U=-\frac{s}{a^{2}} A \sin \frac{\pi}{L} x .
$$

Using undetermined coefficients we obtain

$$
U(x, s)=c_{1} \cosh \frac{s}{a} x+c_{2} \sinh \frac{s}{a} x+\frac{A s}{s^{2}+a^{2} \pi^{2} / L^{2}} \sin \frac{\pi}{L} x .
$$

The transformed boundary conditions, $U(0, s)=0, U(L, s)=0$ give in turn $c_{1}=0$ and $c_{2}=0$. Therefore

$$
U(x, s)=\frac{A s}{s^{2}+a^{2} \pi^{2} / L^{2}} \sin \frac{\pi}{L} x
$$

and

$$
u(x, t)=A \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+a^{2} \pi^{2} / L^{2}}\right\} \sin \frac{\pi}{L} x=A \cos \frac{a \pi}{L} t \sin \frac{\pi}{L} x
$$

2. The transformed equation is

$$
\frac{d^{2} U}{d x^{2}}-s^{2} U=-2 \sin \pi x-4 \sin 3 \pi x
$$

and so

$$
U(x, s)=c_{1} \cosh s x+c_{2} \sinh s x+\frac{2}{s^{2}+\pi^{2}} \sin \pi x+\frac{4}{s^{2}+9 \pi^{2}} \sin 3 \pi x
$$

The transformed boundary conditions, $U(0, s)=0$ and $U(1, s)=0$ give $c_{1}=0$ and $c_{2}=0$. Thus

$$
U(x, s)=\frac{2}{s^{2}+\pi^{2}} \sin \pi x+\frac{4}{s^{2}+9 \pi^{2}} \sin 3 \pi x
$$

and

$$
\begin{aligned}
u(x, t) & =2 \mathscr{L}^{-1}\left\{\frac{1}{s^{2}+\pi^{2}}\right\} \sin \pi x+4 \mathscr{L}^{-1}\left\{\frac{1}{s^{2}+9 \pi^{2}}\right\} \sin 3 \pi x \\
& =\frac{2}{\pi} \sin \pi t \sin \pi x+\frac{4}{3 \pi} \sin 3 \pi t \sin 3 \pi x
\end{aligned}
$$

3. The solution of

$$
a^{2} \frac{d^{2} U}{d x^{2}}-s^{2} U=0
$$

is in this case

$$
U(x, s)=c_{1} e^{-(x / a) s}+c_{2} e^{(x / a) s} .
$$

19
 Series and Residues

EXERCISES 19.1

Sequences and Series

1. $5 i,-5,-5 i, 5,5 i$
2. $2-i, 1,2+i, 3,2-i$
3. $0,2,0,2,0$
4. $1+i, 2 i,-2+2 i,-4,-4-4 i$
5. Converges. To see this write the general term as $\frac{3 i+2 / n}{1+i}$.
6. Converges. To see this write the general term as $\left(\frac{2}{5}\right)^{n} \frac{1+n 2^{-n} i}{1+3 n 5^{-n} i}$.
7. Converges. To see this write the general term as $\frac{(i+2 / n)^{2}}{i}$.
8. Diverges. To see this consider the term $\frac{n}{n+1} i^{n}$ and take n to be an odd positive integer.
9. Diverges. To see this write the general term as $\sqrt{n}\left(1+\frac{1}{\sqrt{n}} i^{n}\right)$.
10. Converges. The real part of the general term converges to 0 and the imaginary part of the general term converges to π.
11. $\operatorname{Re}\left(z_{n}\right)=\frac{8 n^{2}+n}{4 n^{2}+1} \rightarrow 2$ as $n \rightarrow \infty$, and $\operatorname{Im}\left(z_{n}\right)=\frac{6 n^{2}-4 n}{4 n^{2}+1} \rightarrow \frac{3}{2}$ as $n \rightarrow \infty$.
12. Write $z_{n}=\left(\frac{1}{4}+\frac{1}{4} i\right)^{n}$ in polar form as $z_{n}=\left(\frac{\sqrt{2}}{4}\right)^{n} \cos n \theta+i\left(\frac{\sqrt{2}}{4}\right)^{n} \sin n \theta$. Now

$$
\operatorname{Re}\left(z_{n}\right)=\left(\frac{\sqrt{2}}{4}\right)^{n} \cos n \theta \rightarrow 0 \text { as } n \rightarrow \infty \quad \text { and } \quad \operatorname{Im}\left(z_{n}\right)=\left(\frac{\sqrt{2}}{4}\right)^{n} \sin n \theta \rightarrow 0 \text { as } n \rightarrow \infty
$$

since $\sqrt{2} / 4<1$.
13. $S_{n}=\frac{1}{1+2 i}-\frac{1}{2+2 i}+\frac{1}{2+2 i}-\frac{1}{3+2 i}+\frac{1}{3+2 i}-\frac{1}{4+2 i}+\cdots+\frac{1}{n+2 i}-\frac{1}{n+1+2 i}=\frac{1}{1+2 i}-\frac{1}{n+1+2 i}$ Thus, $\lim _{n \rightarrow \infty} S_{n}=\frac{1}{1+2 i}=\frac{1}{5}-\frac{2}{5} i$.
14. By partial fractions, $\frac{i}{k(k+1)}=\frac{i}{k}-\frac{i}{k+1}$ and so

$$
S_{n}=i-\frac{i}{2}+\frac{i}{2}-\frac{i}{3}+\frac{i}{3}-\frac{i}{4}+\cdots+\frac{i}{n}-\frac{i}{n+1}=i-\frac{i}{n+1} .
$$

Thus $\lim _{n \rightarrow \infty} S_{n}=i$.

