1 PRECALCULUS REVIEW

1.1 Real Numbers, Functions, and Graphs

Preliminary Questions

1. Give an example of numbers a and b such that $a<b$ and $|a|>|b|$.

SOLUTION Take $a=-3$ and $b=1$. Then $a<b$ but $|a|=3>1=|b|$.
2. Which numbers satisfy $|a|=a$? Which satisfy $|a|=-a$? What about $|-a|=a$?

SOLUTION The numbers $a \geq 0$ satisfy $|a|=a$ and $|-a|=a$. The numbers $a \leq 0$ satisfy $|a|=-a$.
3. Give an example of numbers a and b such that
$|a+b|<|a|+|b|$.
SOLUTION Take $a=-3$ and $b=1$. Then

$$
|a+b|=|-3+1|=|-2|=2, \quad \text { but } \quad|a|+|b|=|-3|+|1|=3+1=4 \text {. }
$$

Thus, $|a+b|<|a|+|b|$.
4. Are there numbers a and b such that $|a+b|>|a|+|b|$?

SOLUTION No. By the Triangle inequality, $|a+b| \leq|a|+|b|$ for all real numbers a and b.
5. What are the coordinates of the point lying at the intersection of the lines $x=9$ and $y=-4$?

SOLUTION The point $(9,-4)$ lies at the intersection of the lines $x=9$ and $y=-4$.
6. In which quadrant do the following points lie?
(a) $(1,4)$
(b) $(-3,2)$
(c) $(4,-3)$
(d) $(-4,-1)$

SOLUTION

(a) Because both the x - and y-coordinates of the point $(1,4)$ are positive, the point $(1,4)$ lies in the first quadrant.
(b) Because the x-coordinate of the point $(-3,2)$ is negative but the y-coordinate is positive, the point $(-3,2)$ lies in the second quadrant.
(c) Because the x-coordinate of the point $(4,-3)$ is positive but the y-coordinate is negative, the point $(4,-3)$ lies in the fourth quadrant.
(d) Because both the x - and y-coordinates of the point $(-4,-1)$ are negative, the point $(-4,-1)$ lies in the third quadrant.
7. What is the radius of the circle with equation
$(x-7)^{2}+(y-8)^{2}=9$?
SOLUTION The circle with equation $(x-7)^{2}+(y-8)^{2}=9$ has radius 3 .
8. The equation $f(x)=5$ has a solution if (choose one):
(a) 5 belongs to the domain of f.
(b) 5 belongs to the range of f.

SOLUTION The correct response is (b): the equation $f(x)=5$ has a solution if 5 belongs to the range of f.
9. What kind of symmetry does the graph have if $f(-x)=-f(x)$?

SOLUTION If $f(-x)=-f(x)$, then the graph of f is symmetric with respect to the origin.
10. Is there a function that is both even and odd?

SOLUTION Yes. The constant function $f(x)=0$ for all real numbers x is both even and odd because

$$
f(-x)=0=f(x)
$$

and

$$
f(-x)=0=-0=-f(x)
$$

for all real numbers x.
71. Suppose that f has domain $[4,8]$ and range $[2,6]$. Find the domain and range of:
(a) $y=f(x)+3$
(b) $y=f(x+3)$
(c) $y=f(3 x)$
(d) $y=3 f(x)$

SOLUTION

(a) $f(x)+3$ is obtained by shifting $f(x)$ upward three units. Therefore, the domain remains $[4,8]$, while the range becomes [5, 9].
(b) $f(x+3)$ is obtained by shifting $f(x)$ left three units. Therefore, the domain becomes $[1,5]$, while the range remains [2, 6].
(c) $f(3 x)$ is obtained by compressing $f(x)$ horizontally by a factor of three. Therefore, the domain becomes $\left[\frac{4}{3}, \frac{8}{3}\right]$, while the range remains $[2,6]$.
(d) $3 f(x)$ is obtained by stretching $f(x)$ vertically by a factor of three. Therefore, the domain remains [4, 8], while the range becomes $[6,18]$.
73. Suppose that the graph of $f(x)=\sin x$ is compressed horizontally by a factor of 2 and then shifted 5 units to the right.
(a) What is the equation for the new graph?
(b) What is the equation if you first shift by 5 and then compress by 2 ?
(c) GU Verify your answers by plotting your equations.

SOLUTION

(a) Let $f(x)=\sin x$. After compressing the graph of f horizontally by a factor of 2 , we obtain the function $g(x)=$ $f(2 x)=\sin 2 x$. Shifting the graph 5 units to the right then yields

$$
h(x)=g(x-5)=\sin 2(x-5)=\sin (2 x-10)
$$

(b) Let $f(x)=\sin x$. After shifting the graph 5 units to the right, we obtain the function $g(x)=f(x-5)=\sin (x-5)$. Compressing the graph horizontally by a factor of 2 then yields

$$
h(x)=g(2 x)=\sin (2 x-5)
$$

(c) The figure below at the top left shows the graphs of $y=\sin x$ (the dashed curve), the sine graph compressed horizontally by a factor of 2 (the dash, double dot curve) and then shifted right 5 units (the solid curve). Compare this last graph with the graph of $y=\sin (2 x-10)$ shown at the bottom left.

The figure below at the top right shows the graphs of $y=\sin x$ (the dashed curve), the sine graph shifted to the right 5 units (the dash, double dot curve) and then compressed horizontally by a factor of 2 (the solid curve). Compare this last graph with the graph of $y=\sin (2 x-5)$ shown at the bottom right.

75. Sketch the graph of $y=f(2 x)$ and $y=f\left(\frac{1}{2} x\right)$, where $f(x)=|x|+1$ (Figure 28).

SOLUTION The graph of $y=f(2 x)$ is obtained by compressing the graph of $y=f(x)$ horizontally by a factor of 2 (see the graph below on the left). The graph of $y=f\left(\frac{1}{2} x\right)$ is obtained by stretching the graph of $y=f(x)$ horizontally by a factor of 2 (see the graph below on the right).

7. $\lim _{x \rightarrow 2} \frac{x^{x}-4}{x^{2}-4}$

SOLUTION Let $f(x)=\frac{x^{x}-4}{x^{2}-4}$. The data in the table below suggests that

$$
\lim _{x \rightarrow 2} \frac{x^{x}-4}{x^{2}-4} \approx 1.69
$$

x	1.9	1.99	1.999	2.001	2.01	2.1
$f(x)$	1.575461	1.680633	1.691888	1.694408	1.705836	1.828386

(The exact value is $1+\ln 2$.)
9. $\lim _{x \rightarrow 1}\left(\frac{7}{1-x^{7}}-\frac{3}{1-x^{3}}\right)$

SOLUTION Let $f(x)=\frac{7}{1-x^{7}}-\frac{3}{1-x^{3}}$. The data in the table below suggests that

$$
\lim _{x \rightarrow 1}\left(\frac{7}{1-x^{7}}-\frac{3}{1-x^{3}}\right) \approx 2.00
$$

x	0.9	0.99	0.999	1.001	1.01	1.1
$f(x)$	2.347483	2.033498	2.003335	1.996668	1.966835	1.685059

(The exact value is 2.)
In Exercises 11-50, evaluate the limit if it exists. If not, determine whether the one-sided limits exist (finite or infinite).
11. $\lim _{x \rightarrow 4}\left(3+x^{1 / 2}\right)$

SOLUTION $\quad \lim _{x \rightarrow 4}\left(3+x^{1 / 2}\right)=3+\sqrt{4}=5$.
13. $\lim _{x \rightarrow-2} \frac{4}{x^{3}}$

SOLUTION $\lim _{x \rightarrow-2} \frac{4}{x^{3}}=\frac{4}{(-2)^{3}}=-\frac{1}{2}$.
15. $\lim _{t \rightarrow 9} \frac{\sqrt{t}-3}{t-9}$

SOLUTION $\lim _{t \rightarrow 9} \frac{\sqrt{t}-3}{t-9}=\lim _{t \rightarrow 9} \frac{\sqrt{t}-3}{(\sqrt{t}-3)(\sqrt{t}+3)}=\lim _{t \rightarrow 9} \frac{1}{\sqrt{t}+3}=\frac{1}{\sqrt{9}+3}=\frac{1}{6}$.
17. $\lim _{x \rightarrow 1} \frac{x^{3}-x}{x-1}$

SOLUTION $\lim _{x \rightarrow 1} \frac{x^{3}-x}{x-1}=\lim _{x \rightarrow 1} \frac{x(x-1)(x+1)}{x-1}=\lim _{x \rightarrow 1} x(x+1)=1(1+1)=2$.
19. $\lim _{t \rightarrow 9} \frac{t-6}{\sqrt{t}-3}$

SOLUTION Because the one-sided limits

$$
\lim _{t \rightarrow 9-} \frac{t-6}{\sqrt{t}-3}=-\infty \quad \text { and } \quad \lim _{t \rightarrow 9+} \frac{t-6}{\sqrt{t}-3}=\infty
$$

are not equal, the two-sided limit

$$
\lim _{t \rightarrow 9} \frac{t-6}{\sqrt{t}-3} \quad \text { does not exist. }
$$

21. $\lim _{x \rightarrow-1^{+}} \frac{1}{x+1}$

SOLUTION As $x \rightarrow-1^{+}, x+1 \rightarrow 0^{+}$. Therefore,

$$
\lim _{x \rightarrow-1^{+}} \frac{1}{x+1}=\infty
$$

In Exercises 35-37, use Theorem 1 to verify the formula.
35. $\frac{d}{d x} \cot x=-\csc ^{2} x$

SOLUTION $\cot x=\frac{\cos x}{\sin x}$. Using the quotient rule and the derivative formulas, we compute:

$$
\frac{d}{d x} \cot x=\frac{d}{d x} \frac{\cos x}{\sin x}=\frac{\sin x(-\sin x)-\cos x(\cos x)}{\sin ^{2} x}=\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x}=\frac{-1}{\sin ^{2} x}=-\csc ^{2} x .
$$

37. $\frac{d}{d x} \csc x=-\csc x \cot x$

SOLUTION Since $\csc x=\frac{1}{\sin x}$, we can apply the quotient rule and the two known derivatives to get:

$$
\frac{d}{d x} \csc x=\frac{d}{d x} \frac{1}{\sin x}=\frac{\sin x(0)-1(\cos x)}{\sin ^{2} x}=\frac{-\cos x}{\sin ^{2} x}=-\frac{\cos x}{\sin x} \frac{1}{\sin x}=-\cot x \csc x .
$$

In Exercises 39-42, calculate the higher derivative.
39. $f^{\prime \prime}(\theta), \quad f(\theta)=\theta \sin \theta$

SOLUTION Let $f(\theta)=\theta \sin \theta$. Then

$$
\begin{aligned}
f^{\prime}(\theta) & =\theta \cos \theta+\sin \theta \\
f^{\prime \prime}(\theta) & =\theta(-\sin \theta)+\cos \theta+\cos \theta=-\theta \sin \theta+2 \cos \theta
\end{aligned}
$$

41. $y^{\prime \prime}, \quad y^{\prime \prime \prime}, \quad y=\tan x$

SOLUTION Let $y=\tan x$. Then $y^{\prime}=\sec ^{2} x$ and by the Chain Rule,

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d}{d x} \sec ^{2} x=2(\sec x)(\sec x \tan x)=2 \sec ^{2} x \tan x \\
y^{\prime \prime \prime} & =2 \sec ^{2} x\left(\sec ^{2} x\right)+\left(4 \sec ^{2} x \tan x\right) \tan x=2 \sec ^{4} x+4 \sec ^{2} x \tan ^{2} x
\end{aligned}
$$

43. Calculate the first five derivatives of $f(x)=\cos x$. Then determine $f^{(8)}(x)$ and $f^{(37)}(x)$.

SOLUTION Let $f(x)=\cos x$.

- Then $f^{\prime}(x)=-\sin x, f^{\prime \prime}(x)=-\cos x, f^{\prime \prime \prime}(x)=\sin x, f^{(4)}(x)=\cos x$, and $f^{(5)}(x)=-\sin x$.
- Accordingly, the successive derivatives of f cycle among

$$
\{-\sin x,-\cos x, \sin x, \cos x\}
$$

in that order. Since 8 is a multiple of 4 , we have $f^{(8)}(x)=\cos x$.

- Since 36 is a multiple of 4 , we have $f^{(36)}(x)=\cos x$. Therefore, $f^{(37)}(x)=-\sin x$.

45. Find the values of x between 0 and 2π where the tangent line to the graph of $y=\sin x \cos x$ is horizontal. SOLUTION Let $y=\sin x \cos x$. Then

$$
y^{\prime}=(\sin x)(-\sin x)+(\cos x)(\cos x)=\cos ^{2} x-\sin ^{2} x
$$

When $y^{\prime}=0$, we have $\sin x= \pm \cos x$. In the interval $[0,2 \pi]$, this occurs when $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$.
47. GU Let $g(t)=t-\sin t$.
(a) Plot the graph of g with a graphing utility for $0 \leq t \leq 4 \pi$.
(b) Show that the slope of the tangent line is nonnegative. Verify this on your graph.
(c) For which values of t in the given range is the tangent line horizontal?

SOLUTION Let $g(t)=t-\sin t$.
(a) Here is a graph of g over the interval $[0,4 \pi]$.
41. $y=\frac{x^{4}+\sqrt{x}}{x^{2}}$

SOLUTION Let

$$
y=\frac{x^{4}+\sqrt{x}}{x^{2}}=x^{2}+x^{-3 / 2} .
$$

Then

$$
\frac{d y}{d x}=2 x-\frac{3}{2} x^{-5 / 2} .
$$

43. $y=\sqrt{x+\sqrt{x+\sqrt{x}}}$

SOLUTION Let $y=\sqrt{x+\sqrt{x+\sqrt{x}}}$. Then

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{2}(x+\sqrt{x+\sqrt{x}})^{-1 / 2} \frac{d}{d x}(x+\sqrt{x+\sqrt{x}}) \\
& =\frac{1}{2}(x+\sqrt{x+\sqrt{x}})^{-1 / 2}\left(1+\frac{1}{2}(x+\sqrt{x})^{-1 / 2} \frac{d}{d x}(x+\sqrt{x})\right) \\
& =\frac{1}{2}(x+\sqrt{x+\sqrt{x}})^{-1 / 2}\left(1+\frac{1}{2}(x+\sqrt{x})^{-1 / 2}\left(1+\frac{1}{2} x^{-1 / 2}\right)\right) .
\end{aligned}
$$

45. $y=\tan \left(t^{-3}\right)$

SOLUTION Let $y=\tan \left(t^{-3}\right)$. Then

$$
\frac{d y}{d t}=\sec ^{2}\left(t^{-3}\right) \frac{d}{d t} t^{-3}=-3 t^{-4} \sec ^{2}\left(t^{-3}\right)
$$

47. $y=\sin (2 x) \cos ^{2} x$

SOLUTION Let $y=\sin (2 x) \cos ^{2} x=2 \sin x \cos ^{3} x$. Then

$$
\frac{d y}{d x}=-6 \sin ^{2} x \cos ^{2} x+2 \cos ^{4} x .
$$

49. $y=\frac{t}{1+\sec t}$
solution Let $y=\frac{t}{1+\sec t}$. Then

$$
\frac{d y}{d t}=\frac{1+\sec t-t \sec t \tan t}{(1+\sec t)^{2}} .
$$

51. $y=\frac{8}{1+\cot \theta}$

SOLUTION Let $y=\frac{8}{1+\cot \theta}=8(1+\cot \theta)^{-1}$. Then

$$
\frac{d y}{d \theta}=-8(1+\cot \theta)^{-2} \frac{d}{d \theta}(1+\cot \theta)=\frac{8 \csc ^{2} \theta}{(1+\cot \theta)^{2}} .
$$

53. $y=\tan (\sqrt{1+\csc \theta})$

SOLUTION

$$
\begin{aligned}
\frac{d y}{d x} & =\sec ^{2}(\sqrt{1+\csc \theta}) \frac{d}{d x} \sqrt{1+\csc \theta}=\sec ^{2}(\sqrt{1+\csc \theta}) \cdot \frac{1}{2}(1+\csc \theta)^{-1 / 2} \frac{d}{d x}(1+\csc \theta) \\
& =-\frac{\sec ^{2}(\sqrt{1+\csc \theta}) \csc \theta \cot \theta}{2(\sqrt{1+\csc \theta})} .
\end{aligned}
$$

59. A rectangular box of height h with a square base of side b has volume $V=4 \mathrm{~m}^{3}$. Two of the side faces are made of material costing $\$ 40 / \mathrm{m}^{2}$. The remaining sides cost $\$ 20 / \mathrm{m}^{2}$. Which values of b and h minimize the cost of the box?
SOLUTION Because the volume of the box is

$$
V=b^{2} h=4 \quad \text { it follows that } \quad h=\frac{4}{b^{2}} .
$$

Now, the cost of the box is

$$
C=40(2 b h)+20(2 b h)+20 b^{2}=120 b h+20 b^{2}=\frac{480}{b}+20 b^{2}
$$

Thus,

$$
C^{\prime}(b)=-\frac{480}{b^{2}}+40 b=0
$$

when $b=\sqrt[3]{12}$ meters. Because $C(b) \rightarrow \infty$ as $b \rightarrow 0+$ and as $b \rightarrow \infty$, it follows that cost is minimized when $b=\sqrt[3]{12}$ meters and $h=\frac{1}{3} \sqrt[3]{12}$ meters.
61. Let $N(t)$ be the size of a tumor (in units of 10^{6} cells) at time t (in days). According to the Gompertz Model, $d N / d t=N(a-b \ln N)$ where a, b are positive constants. Show that the maximum value of N is $e^{\frac{a}{b}}$ and that the tumor increases most rapidly when $N=e^{\frac{a}{b}-1}$.
SOLUTION Given $d N / d t=N(a-b \ln N)$, the critical points of N occur when $N=0$ and when $N=e^{a / b}$. The sign of $N^{\prime}(t)$ changes from positive to negative at $N=e^{a / b}$ so the maximum value of N is $e^{a / b}$. To determine when N changes most rapidly, we calculate

$$
N^{\prime \prime}(t)=N\left(-\frac{b}{N}\right)+a-b \ln N=(a-b)-b \ln N
$$

Thus, $N^{\prime}(t)$ is increasing for $N<e^{a / b-1}$, is decreasing for $N>e^{a / b-1}$ and is therefore maximum when $N=e^{a / b-1}$. Therefore, the tumor increases most rapidly when $N=e^{\frac{a}{b}-1}$.
63. Find the maximum volume of a right-circular cone placed upside-down in a right-circular cone of radius $R=3$ and height $H=4$ as in Figure 3. A cone of radius r and height h has volume $\frac{1}{3} \pi r^{2} h$.

FIGURE 3
SOLUTION Let r denote the radius and h the height of the upside down cone. By similar triangles, we obtain the relation

$$
\frac{4-h}{r}=\frac{4}{3} \quad \text { so } \quad h=4\left(1-\frac{r}{3}\right)
$$

and the volume of the upside down cone is

$$
V(r)=\frac{1}{3} \pi r^{2} h=\frac{4}{3} \pi\left(r^{2}-\frac{r^{3}}{3}\right)
$$

for $0 \leq r \leq 3$. Thus,

$$
\frac{d V}{d r}=\frac{4}{3} \pi\left(2 r-r^{2}\right)
$$

and the critical points are $r=0$ and $r=2$. Because $V(0)=V(3)=0$ and

$$
V(2)=\frac{4}{3} \pi\left(4-\frac{8}{3}\right)=\frac{16}{9} \pi
$$

the maximum volume of a right-circular cone placed upside down in a right-circular cone of radius 3 and height 4 is

$$
\frac{16}{9} \pi
$$

51. Compute $\int \frac{d x}{x^{2}-1}$ in two ways and verify that the answers agree: first via trigonometric substitution and then using the identity

$$
\frac{1}{x^{2}-1}=\frac{1}{2}\left(\frac{1}{x-1}-\frac{1}{x+1}\right)
$$

SOLUTION Using trigonometric substitution, let $x=\sec \theta$. Then $d x=\sec \theta \tan \theta d \theta, x^{2}-1=\sec ^{2} \theta-1=$ $\tan ^{2} \theta$, and

$$
I=\int \frac{d x}{x^{2}-1}=\int \frac{\sec \theta \tan \theta d \theta}{\tan ^{2} \theta}=\int \frac{\sec \theta}{\tan \theta} d \theta=\int \frac{d \theta}{\sin \theta}=\int \csc \theta d \theta=\ln |\csc \theta-\cot \theta|+C
$$

Since $x=\sec \theta$, we construct the following right triangle:

From this we see that $\csc \theta=x / \sqrt{x^{2}-1}$ and $\cot \theta=1 / \sqrt{x^{2}-1}$. This gives us

$$
I=\ln \left|\frac{x}{\sqrt{x^{2}-1}}-\frac{1}{\sqrt{x^{2}-1}}\right|+C=\ln \left|\frac{x-1}{\sqrt{x^{2}-1}}\right|+C
$$

Using the given identity, we get
$I=\int \frac{d x}{x^{2}-1}=\frac{1}{2} \int\left(\frac{1}{x-1}-\frac{1}{x+1}\right) d x=\frac{1}{2} \int \frac{d x}{x-1}-\frac{1}{2} \int \frac{d x}{x+1}=\frac{1}{2} \ln |x-1|-\frac{1}{2} \ln |x+1|+C$.
To confirm that these answers agree, note that

$$
\frac{1}{2} \ln |x-1|-\frac{1}{2} \ln |x+1|=\frac{1}{2} \ln \left|\frac{x-1}{x+1}\right|=\ln \sqrt{\left|\frac{x-1}{x+1}\right|}=\ln \left|\frac{\sqrt{x-1}}{\sqrt{x+1}} \cdot \frac{\sqrt{x-1}}{\sqrt{x-1}}\right|=\ln \left|\frac{x-1}{\sqrt{x^{2}-1}}\right|
$$

53. A charged wire creates an electric field at a point P located at a distance D from the wire (Figure 8). The component E_{\perp} of the field perpendicular to the wire (in newtons per coulomb) is

$$
E_{\perp}=\int_{x_{1}}^{x_{2}} \frac{k \lambda D}{\left(x^{2}+D^{2}\right)^{3 / 2}} d x
$$

where λ is the charge density (coulombs per meter), $k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$ (Coulomb constant), and x_{1}, x_{2} are as in the figure. Suppose that $\lambda=6 \times 10^{-4} \mathrm{C} / \mathrm{m}$, and $D=3 \mathrm{~m}$. Find E_{\perp} if (a) $x_{1}=0$ and $x_{2}=30 \mathrm{~m}$, and (b) $x_{1}=-15 \mathrm{~m}$ and $x_{2}=15 \mathrm{~m}$.

FIGURE 8
SOLUTION Let $x=D \tan \theta$. Then $d x=D \sec ^{2} \theta d \theta$,

$$
x^{2}+D^{2}=D^{2} \tan ^{2} \theta+D^{2}=D^{2}\left(\tan ^{2} \theta+1\right)=D^{2} \sec ^{2} \theta
$$

and

$$
\begin{aligned}
E_{\perp} & =\int_{x_{1}}^{x_{2}} \frac{k \lambda D}{\left(x^{2}+D^{2}\right)^{3 / 2}} d x=k \lambda D \int_{x_{1}}^{x_{2}} \frac{D \sec ^{2} \theta d \theta}{\left(D^{2} \sec ^{2} \theta\right)^{3 / 2}} \\
& =\frac{k \lambda D^{2}}{D^{3}} \int_{x_{1}}^{x_{2}} \frac{\sec ^{2} \theta d \theta}{\sec ^{3} \theta}=\frac{k \lambda}{D} \int_{x_{1}}^{x_{2}} \cos \theta d \theta=\left.\frac{k \lambda}{D} \sin \theta\right|_{x_{1}} ^{x_{2}}
\end{aligned}
$$

4. Which is the projection of \mathbf{v} along \mathbf{v} : (a) \mathbf{v} or (b) $\mathbf{e}_{\mathbf{v}}$?

SOLUTION The projection of \mathbf{v} along itself is \mathbf{v}, since

$$
\mathbf{v}_{\| \mathbf{v}}=\left(\frac{\mathbf{v} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}=\mathbf{v}
$$

5. Let $\mathbf{u}_{\| \mathbf{v}}$ be the projection of \mathbf{u} along \mathbf{v}. Which of the following is the projection \mathbf{u} along the vector $2 \mathbf{v}$ and which is the projection of $2 \mathbf{u}$ along \mathbf{v} ?
(a) $\frac{1}{2} \mathbf{u}_{\| \mathbf{v}}$
(b) $\mathbf{u}_{\| \mathbf{v}}$
(c) $2 \mathbf{u}_{\| \mathrm{v}}$

SOLUTION Since $\mathbf{u}_{\| \mathbf{v}}$ is the projection of \mathbf{u} along \mathbf{v}, we have,

$$
\mathbf{u}_{\| \mathbf{v}}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}
$$

The projection of \mathbf{u} along the vector $2 \mathbf{v}$ is

$$
\mathbf{u}_{\| 2 \mathbf{v}}=\left(\frac{\mathbf{u} \cdot(2 \mathbf{v})}{(2 \mathbf{v}) \cdot(2 \mathbf{v})}\right) 2 \mathbf{v}=\left(\frac{2(\mathbf{u} \cdot \mathbf{v})}{4(\mathbf{v} \cdot \mathbf{v})}\right) 2 \mathbf{v}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}=\mathbf{u}_{\| \mathbf{v}}
$$

That is, $\mathbf{u}_{\| \mathbf{v}}$ is the projection of \mathbf{u} along $2 \mathbf{v}$. Notice that the projection of \mathbf{u} along \mathbf{v} is the projection of \mathbf{u} along the unit vector $\mathbf{e}_{\mathbf{v}}$, hence it depends on the direction of \mathbf{v} rather than on the length of \mathbf{v}. Therefore, the projection of \mathbf{u} along \mathbf{v} and along $2 \mathbf{v}$ is the same vector.

For the second question,

$$
(2 \mathbf{u})_{\| \mathbf{v}}=\left(\frac{(2 \mathbf{u}) \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}=2\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}=2 \mathbf{u}_{\| \mathbf{v}}
$$

That is, the projection of $2 \mathbf{u}$ along \mathbf{v} is twice the projection of \mathbf{u} along \mathbf{v}.
6. Which of the following is equal to $\cos \theta$, where θ is the angle between \mathbf{u} and \mathbf{v} ?
(a) $\mathbf{u} \cdot \mathbf{v}$
(b) $\mathbf{u} \cdot \mathbf{e}_{\mathbf{v}}$
(c) $e_{u} \cdot e_{v}$

SOLUTION By the Theorems on the Dot Product and the Angle Between Vectors, we have

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{\mathbf{u}}{\|\mathbf{u}\|} \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|}=\mathbf{e}_{\mathbf{u}} \cdot \mathbf{e}_{\mathbf{v}}
$$

The correct answer is (c).

Exercises

In Exercises 1-12, compute the dot product.

1. $\langle 1,2,1\rangle \cdot\langle 4,3,5\rangle$

SOLUTION Using the definition of the dot product we obtain

$$
\langle 1,2,1\rangle \cdot\langle 4,3,5\rangle=1 \cdot 4+2 \cdot 3+1 \cdot 5=15
$$

3. $\langle 0,1,0\rangle \cdot\langle 7,41,-3\rangle$

SOLUTION The dot product is

$$
\langle 0,1,0\rangle \cdot\langle 7,41,-3\rangle=0 \cdot 7+1 \cdot 41+0 \cdot(-3)=41
$$

5. $\langle 3,1\rangle \cdot\langle 4,-7\rangle$

SOLUTION The dot product of the two vectors is the following scalar:

$$
\langle 3,1\rangle \cdot\langle 4,-7\rangle=3 \cdot 4+1 \cdot(-7)=5
$$

7. $k \cdot j$

SOLUTION By the orthogonality of \mathbf{j} and \mathbf{k}, we have $\mathbf{k} \cdot \mathbf{j}=0$
9. $(\mathbf{i}+\mathbf{j}) \cdot(\mathbf{j}+\mathbf{k})$

SOLUTION By the distributive law and the orthogonality of \mathbf{i}, \mathbf{j} and \mathbf{k} we have

$$
(\mathbf{i}+\mathbf{j}) \cdot(\mathbf{j}+\mathbf{k})=\mathbf{i} \cdot \mathbf{j}+\mathbf{i} \cdot \mathbf{k}+\mathbf{j} \cdot \mathbf{j}+\mathbf{j} \cdot \mathbf{k}=0+0+1+0=1
$$

In Exercises 41-44, compute the given partial derivatives.
41. $f(x, y)=3 x^{2} y+4 x^{3} y^{2}-7 x y^{5}, \quad f_{x}(1,2)$

SOLUTION Differentiating with respect to x gives

$$
f_{x}(x, y)=6 x y+12 x^{2} y^{2}-7 y^{5}
$$

Evaluating at $(1,2)$ gives

$$
f_{x}(1,2)=6 \cdot 1 \cdot 2+12 \cdot 1^{2} \cdot 2^{2}-7 \cdot 2^{5}=-164
$$

43. $g(u, v)=u \ln (u+v), \quad g_{u}(1,2)$
solution Using the Product Rule and the Chain Rule we get

$$
g_{u}(u, v)=\frac{\partial}{\partial u}(u \ln (u+v))=1 \cdot \ln (u+v)+u \cdot \frac{1}{u+v}=\ln (u+v)+\frac{u}{u+v}
$$

At the point $(1,2)$ we have

$$
g_{u}(1,2)=\ln (1+2)+\frac{1}{1+2}=\ln 3+\frac{1}{3}
$$

Exercises 45 and 46 refer to Example 5.
45. Calculate N for $L=0.4, R=0.12$, and $d=10$, and use the linear approximation to estimate ΔN if d is increased from 10 to 10.4.

SOLUTION From the example in the text we have

$$
N=\left(\frac{2200 R}{L d}\right)^{1.9}
$$

Calculating N for $L=0.4, R=0.12$, and $d=10$ we have

$$
N=\left(\frac{2200 \cdot 0.12}{0.4 \cdot 10}\right)^{1.9} \approx 2865.058
$$

then we will use the derivation

$$
\Delta N \approx \frac{\partial N}{\partial d} \Delta d
$$

since d is increasing from 10 to 10.4 . We need to compute $\partial N / \partial d$, with L and R constant:

$$
\begin{aligned}
\frac{\partial N}{\partial d} & =\frac{\partial}{\partial d}\left(\frac{2200 R}{L d}\right)^{1.9} \\
& =\left(\frac{2200 R}{L}\right)^{1.9} \frac{\partial}{\partial d}\left(d^{-1.9}\right) \\
& =-1.9\left(\frac{2200 R}{L}\right)^{1.9} d^{-2.9}
\end{aligned}
$$

we have first

$$
\left.\frac{\partial N}{\partial d}\right|_{(L, R, d)=(0.4,0.12,10)}=-1.9\left(\frac{2200 \cdot 0.12}{0.4}\right)^{1.9}(10)^{-2.9} \approx-544.361
$$

Therefore we can conclude:

$$
\Delta N \approx \frac{\partial N}{\partial d} \Delta d \approx(-544.361)(10.4-10)=-217.744
$$

The rotated graph is $z=g(y)=\sqrt{a^{2}-(y-b)^{2}}, b-a \leq y \leq b+a$. So, we have,

$$
\begin{aligned}
g^{\prime}(y) & =\frac{-2(y-b)}{2 \sqrt{a^{2}-(y-b)^{2}}}=-\frac{y-b}{\sqrt{a^{2}-(y-b)^{2}}} \\
\sqrt{1+g^{\prime}(y)^{2}} & =\sqrt{1+\frac{(y-b)^{2}}{a^{2}-(y-b)^{2}}}=\sqrt{\frac{a^{2}-(y-b)^{2}+(y-b)^{2}}{a^{2}-(y-b)^{2}}}=\frac{a}{\sqrt{a^{2}-(y-b)^{2}}}
\end{aligned}
$$

We now use symmetry and Eq. (14) to obtain the following area of the torus (we assume that $b-a>0$, hence $y>0$):

$$
\begin{equation*}
\text { Area }(\mathbf{T})=2 \cdot 2 \pi \int_{b-a}^{b+a}|y| \sqrt{1+g^{\prime}(y)^{2}} d y=4 \pi \int_{b-a}^{b+a} \frac{a y}{\sqrt{a^{2}-(y-b)^{2}}} d y \tag{1}
\end{equation*}
$$

(b) We compute the integral using the substitution $u=\frac{y-b}{a}, d u=\frac{1}{a} d y$. We get:

$$
\begin{aligned}
\int_{b-a}^{b+a} \frac{a y}{\sqrt{a^{2}-(y-b)^{2}}} d y & =\int_{-1}^{1} \frac{a^{2} u+a b}{\sqrt{a^{2}-a^{2} u^{2}}} a d u=\int_{-1}^{1} \frac{a^{2} u+a b}{\sqrt{1-u^{2}}} d u \\
& =\int_{-1}^{1} \frac{a^{2} u}{\sqrt{1-u^{2}}} d u+\int_{-1}^{1} \frac{a b}{\sqrt{1-u^{2}}} d u
\end{aligned}
$$

The first integral is zero since the integrand is an odd function. We get:

$$
\int_{b-a}^{b+a} \frac{a y}{\sqrt{a^{2}-(y-b)^{2}}} d y=2 \int_{0}^{1} \frac{a b}{\sqrt{1-u^{2}}} d u=\left.2 a b \sin ^{-1} u\right|_{0} ^{1}=2 a b\left(\frac{\pi}{2}-0\right)=\pi a b
$$

Substituting in (1) gives the following area:

$$
\text { Area }(\mathbf{T})=4 \pi \cdot \pi a b=4 \pi^{2} a b
$$

47. Compute the surface area of the torus in Exercise 45 using Pappus's Theorem.

SOLUTION The generating curve is the circle of radius a in the (y, z)-plane centered at the point $(0, b, 0)$. The length of the generating curve is $L=\pi a$.

The center of mass of the circle is at the center $(\bar{y}, \bar{z})=(b, 0)$, and it traverses a circle of radius b centered at the origin. Therefore, the center of mass makes a distance of $2 \pi b$. Using Pappus' Theorem, the area of the torus is:

$$
L \cdot 2 \pi a=2 \pi a \cdot 2 \pi b=4 \pi^{2} a b .
$$

49. Calculate the gravitational potential V for a hemisphere of radius R with uniform mass distribution.

SOLUTION In Exercise 48(b) we expressed the potential V for a sphere of radius R. To find the potential for a hemisphere of radius R, we need only to modify the limits of the angle ϕ to $0 \leq \phi \leq \frac{\pi}{2}$. This gives the following integral:

$$
\begin{aligned}
V(0,0, r)=V(r) & =-\frac{G m}{4 \pi} \int_{0}^{\pi / 2} \int_{0}^{2 \pi} \frac{\sin \phi d \theta d \phi}{\sqrt{R^{2}+r^{2}-2 R r \cos \phi}}=-\frac{G m}{4 \pi} \cdot 2 \pi \int_{0}^{\pi / 2} \frac{\sin \phi d \phi}{\sqrt{R^{2}+r^{2}-2 R r \cos \phi}} \\
& =-\frac{G m}{4 \pi} \int_{0}^{\pi / 2} \frac{\sin \phi d \phi}{\sqrt{R^{2}+r^{2}-2 R r \cos \phi}}
\end{aligned}
$$

