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is Kp = I'ld, which equals cM by Eq. (1.58). If the physical boundary is tilted so that
n remains perpendicular to M, the cell can be deformed to match with no change in K.
But when the boundary normal n tilts out of the plane perpendicular to M, and the cell
wall deformed to match, the same current I’ is distributed over a width that is larger by
1/cosB, where @ is the angle between n and the plane perpendicular to M. Thus the
surface curmrent-density is reduced by the sine of the angle between n and M, and
-nXM properly represents the current density including its vector sense.

1-12. From Egs. (1.25) and (A.50),
ps = —div P(r) = alﬁ%[ﬂ(m] = 3k

At the surface r = a, by Eq. (1.34) or Prob. 1-11, there is a surface charge density
(Ps)y, = e,*P(a) = ka

We have spherical symmetry and can use Gauss' law. Using a spherical Gaussian
surface of radius r with Eq. (1.6),

&E-da — E(r) 4nr?2 = 4%qenc

When r < g, the charge enclosed is

r
q=Jp;,dv = —Sk.[. 4nrz dr = - 4mkr3
0

E(r<a) = —4nkre, = - 4nP
When r > a, the charge enclosed is zero. (The dielectric dipoles consist of equal
positive and negative charge. Formally, the volume integral of p is canceled by the
surface integral of p;.) Thus, E(r>a) =0.
Gauss' law for the D field, Eq. (1.82), gives
§ D-:da = 4nqfpee = 0

That is, D = 0 inside as well as out, since no free charge is present. As a check, note
that Eq. (1.28) is satisfied both inside and outside the sphere.
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1-13. (a) The bound surface charge is + g =

(ps)y, = n+Pg = Pgcosé

where 6 is the polar angle with respect to the z axis. By
symmetry, the net field at the center (the origin) will be in
the z (or 8 =0) direction. The surface analog of

Eq. (1.20) gives: N\ /.

E,(0) = I @b (e, - e;) 2ma? 5in6 40

b o +1 4n
= - 2nPy J‘ co0s20 sinf d@ = - 2nPy u2du = - —3—Po
0 -1

That is, E(0) = —(4n/3)Py.

(b) The total dipole moment of the polarized sphere is
p = Py(4na3/3), where a is the radius. Since the external
field of a spherical charge distribution is the same as an
equivalent point charge at the origin (Prob. 1-4), the
dipole moment of the superposed uniformly charged
spheres is p = = q¢& = po(4na3/3)6. These are equal
(independent of a) when

Py = pod

Now if we take the origin at the center of the negative sphere, with the center of the
positive sphere at the vector position 8, we can write the total field within the
superposed spheres as

4 4
E = pol-r+(r-81 = -Fpod = -FP

Thus the result of Part (a) extends to the entire volume of the polarized sphere. [Yet
another approach to this problem uses the spherical harmonic expansion of Section
3.3.]

(c) Again we use superposition. If there were no cavity, the (spatial average) field in
the uniform dielectric would be E, as given. Superpose the polarized sphere of Parts
(a) and (b) with its polarization equal and opposite to the polarization in the dielectric,
producing the cavity, in which the net polarization is zero and the field is

E-4p) = E+4p

Chapter 1
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®,(r>a) = 2 C, %P;{cosf))
]

where we have renamed the "B;" coefficients in Eq. (3.39) to avoid confusion.

We must now investigate the boundary conditions that hold at r = a. From Egs.
(1.92) and (1.94), we conclude that the radial (normal) component of B must be
continuous,

B,(inside) = B (outside)

and that the 8 (tangential) components differ by 4nK/c according to
B g(outside) — Bg(inside) = fcl Ko

These boundary conditions couple the inside and outside regions together, and allow us
to make the important inference that, because of the orthogonality of the Legendre
polynomials, only the term involving P = cos@ is acceptable for @, (outside).
Accordingly, we can write the two boundary conditions explicitly as

B, = - a—?} = Bg cos@ = %‘-cosﬂ
ae C_ .. . 4
Bo=- =& =  —l-sin@+Bosing = - Ke(0)

These simultaneous equations can be solved for

3
cy; & =B,

3 7
= —73 Ky(8) = g%anme

The current density varies as sinf, flowing azimuthally on the surface of the sphere.
Translated into discrete turns of wire, this is equivalent to a coil with constant axial
pitch. The external field of the coil is that of a pure dipole.

This problem is closely related to Probs. 1-13 and 2-24. For instance, the magnetic
analog of Prob. 1-13, which showed that the internal field of a uniformly polarized
sphere is constant, gives the internal field of a uniformly magnetized sphere as

4n
H = —TM

from which

B =H4+4nM = +—/—M
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Then from Egq. (1.69),

K =-cnxM - 8iﬂﬂgsinfje.},

3-26. The potential on the symmetry axis can be a

written down immediately: @‘
- Y
o = 525 : =5
(z2 + R?) | ¥
@

For regions where z is less than or greater than R, this
function can be expanded in the respective power series:

owe<m = [ - 5] - 5]
TR T S R

Now imagine a spherical surface of radius R dividing all space into two regions. The
inner region, r < R, contains no charge (we neglect the thickness of the ring, which
lies on the surface r = R). Therefore the potential in this region is a solution of
Laplace's equation and can be written in the form

Q[(r( R) = Ao '['AI [ﬁ)Pl +A2 [‘}%)2 P2+ .es
Similarly for r > R, } (2)

020> 8) = Ao (F)+ s (Ff P aa (T p2e -

Note that we have labeled the terms so that the two series coincide at r=R. On the z
(polar) axis, r = z, 8 — 0, and these series reduce to:
} (3)

®; = Ag+ A [%]-I-Az (%]:+ e
PR

Comparing Egs. (3) with (1), we can evaluate the coefficients as:

Chapter 3
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8-12. 1f we neglect the radiation energy loss, then u is related to r along the
trajectory by

Imug? = mu? + 22

As a perturbation, the energy lost to radiation is given by the nonrelativistic Larmor
formula, Eq. (8.89), as

oo 2
AW = J‘ P(1) dt = %I;idr
0

But,
- _ 1dUu_Ze?
=" md )
2Z¢2

T mr

Because of the reentrant path, we calculate the integral during the outbound segment
from ryin = 2Ze2/mug? to r — oo, and double the result:

2¢2
AW = 3c3 J’ ug J "( rmin uz
Let x = 1/r, and dr = -dx/x2, to obtain the integral

*max
o dr 2 4 X3/2 2x312 max
f e J (—LTXJTH [—2xmu3[T— g +x”2)];
1] = —

Xmax

_ 16 3 _ 16 (m
= 15%max” T 15 (2Z2

(where X = 1 — Xx/xpax, as in Dwight §191.21). Thus,

2e2 (Ze? _1_6 mug? Bmug® 16&_ 2
AW = 353 ( ug 15 22e2 e (Gmue?)

Since by hypothesis B = ugp/c << 1, the perturbation approach is justified.
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8-13. The geometry is defined in Fig. 8-7, and the radiation pattern is given by
Eq. (8.106). (a) For the orbital plane, the azimuthal angle ¢ is 0 or , and 6
measures the polar angle from u. Inspection of Eq. (8.106) shows that the
dependence on @ and @ is such that we can suppress the double-valued ¢ and interpret
0 as an azimuthal angle in this plane (i.e., 0< @ < 2n). Figure 8-9 plots the
magnitude of dP/d2 as a function of @ with u (to the right) and a (up or down). The
pattern is symmetrical about the u axis, and the numerator simplifies to

(1 - BcosB)? - (1 — B2)sin2@
= (1-2Pcos6 + B2cos26) - (1 — B2)(1 - cos28)
= - 2BcosB + 2 + cos2@
= (cos@ - B)2
Thus in the orbital plane the angular dependence reduces to

- B2
daP o [c0s0-P) : )
dQ), 4 plane (1 = BcosB)
The nulls occur when cos@ = J3, and for the examples of Fig. 8-9:

cos-1(0.7) = 45.57°
cos-1(0.9) = 25.84°

cos~1(0.1) = 84.26°
cos-1(0.3) = 72.54°
cos-1(0.5) = 60°

(b) The maximum value of (1) [and of the full Eq. (8.106)] occurs for 8 =0, for
which (dP/dQ)max = 1 /(I—ﬂ)-" Let o be the value of 8 at which the intensity falls to
one-half of maximum, so that the beamwidth as defined is A6 = 2a. Expand the
cosine for small angles (cosax— 1 — %az) to write the half-power condition as:

(1-%e2-8°
(1-B+5%8a2° ~ 201-B)

Cross-multiplying and discarding terms beyond o2, we have
201 - B[ (1 - B2 - 21 - ByGed]| = (1 - B)° +5(1 - B*(}pe?)

(1-8)° = (1-p)*(2a2+ 3pod)

(A6),.q plane = 20 = 2 1-8

2 + 3P
- 2—}{3\11-,6 = 0943V1-p
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