STUDENT'S Solutions Manual

Judith A. Penna
Indiana University Purdue University Indianapolis

College Algebra: Graphs and Models

 Fifth EditionMarvin L. Bittinger
Indiana University Purdue University Indianapolis
Judith A. Beecher
Indiana University Purdue University Indianapolis
David J. Ellenbogen
Community College of Vermont
Judith A. Penna
Indiana University Purdue University Indianapolis

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson from electronic files supplied by the author.

Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Publishing as Pearson, 75 Arlington Street, Boston, MA 02116.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN-13: 978-0-321-79125-2
ISBN-10: 0-321-79125-8

123456 BRR 1514131211
www.pearsonhighered.com
PEARSON

Contents

Chapter R 1
Chapter 1 25
Chapter 2 63
Chapter 3 93
Chapter 4 129
Chapter 5 181
Chapter 6 215
Chapter 7 275
Chapter 8 307

$$
\begin{array}{lll}
x=-3-4 & \text { or } & x=-3+4 \\
x=-7 & \text { or } & x=1
\end{array}
$$

The solutions are -7 and 1 .
31. $\quad x^{2}=8 x-9$

$$
\begin{aligned}
& x^{2}-8 x=-9 \quad \text { Subtracting } 8 x \\
& x^{2}-8 x+16=-9+16 \text { Completing the square: } \\
& \frac{1}{2}(-8)=-4 \text { and }(-4)^{2}=16
\end{aligned}
$$

$$
\begin{aligned}
(x-4)^{2} & =7 & & \text { Factoring } \\
x-4 & = \pm \sqrt{7} & & \text { Using the principle } \\
x & =4 \pm \sqrt{7} & & \text { of square roots }
\end{aligned}
$$

The solutions are $4-\sqrt{7}$ and $4+\sqrt{7}$, or $4 \pm \sqrt{7}$.
33. $x^{2}+8 x+25=0$

$$
\begin{array}{rlrl}
x^{2}+8 x & =-25 & & \text { Subtracting } 25 \\
x^{2}+8 x+16 & =-25+16 & & \text { Completing the } \\
& & \text { square: } \\
(x+4)^{2} & =-9 & & \frac{1}{2} \cdot 8=4 \text { and } 4^{2}=16 \\
x+4 & = \pm 3 i & & \text { Factoring } \\
x & =-4 \pm 3 i & & \text { of square roots }
\end{array}
$$

The solutions are $-4-3 i$ and $-4+3 i$, or $-4 \pm 3 i$.
35. $3 x^{2}+5 x-2=0$

$$
\begin{aligned}
3 x^{2}+5 x & =2 \\
x^{2}+\frac{5}{3} x & =\frac{2}{3}
\end{aligned}
$$

Adding 2
Dividing by 3
$x^{2}+\frac{5}{3} x+\frac{25}{36}=\frac{2}{3}+\frac{25}{36} \quad$ Completing the
square:
$\frac{1}{2} \cdot \frac{5}{3}=\frac{5}{6}$ and $\left(\frac{5}{6}\right)^{2}=\frac{25}{36}$
$\left(x+\frac{5}{6}\right)^{2}=\frac{49}{36}$
Factoring and
simplifying
$x+\frac{5}{6}= \pm \frac{7}{6} \quad \begin{aligned} & \quad \begin{array}{l}\text { Using the principle } \\ \text { of square roots }\end{array}\end{aligned}$
$x=-\frac{5}{6} \pm \frac{7}{6}$
$x=-\frac{5}{6}-\frac{7}{6}$ or $x=-\frac{5}{6}+\frac{7}{6}$
$x=-\frac{12}{6} \quad$ or $\quad x=\frac{2}{6}$
$x=-2 \quad$ or $\quad x=\frac{1}{3}$
The solutions are -2 and $\frac{1}{3}$.
37. $x^{2}-2 x=15$
$x^{2}-2 x-15=0$
$(x-5)(x+3)=0 \quad$ Factoring
$x-5=0$ or $x+3=0$
$x=5$ or $\quad x=-3$
The solutions are 5 and -3 .
39. $\quad 5 m^{2}+3 m=2$

$$
\begin{array}{ccc}
5 m^{2}+3 m-2=0 & \\
(5 m-2)(m+1)=0 & \text { Factoring } \\
5 m-2=0 \quad \text { or } & m+1=0 \\
m=\frac{2}{5} & \text { or } & \\
5 m=-1
\end{array}
$$

The solutions are $\frac{2}{5}$ and -1 .
41. $3 x^{2}+6=10 x$

$$
3 x^{2}-10 x+6=0
$$

We use the quadratic formula. Here $a=3, b=-10$, and $c=6$.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-10) \pm \sqrt{(-10)^{2}-4 \cdot 3 \cdot 6}}{2 \cdot 3} \quad \text { Substituting } \\
& =\frac{10 \pm \sqrt{28}}{6}=\frac{10 \pm 2 \sqrt{7}}{6} \\
& =\frac{2(5 \pm \sqrt{7})}{2 \cdot 3}=\frac{5 \pm \sqrt{7}}{3}
\end{aligned}
$$

The solutions are $\frac{5-\sqrt{7}}{3}$ and $\frac{5+\sqrt{7}}{3}$, or $\frac{5 \pm \sqrt{7}}{3}$.
43. $x^{2}+x+2=0$

We use the quadratic formula. Here $a=1, b=1$, and $c=2$.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-1 \pm \sqrt{1^{2}-4 \cdot 1 \cdot 2}}{2 \cdot 1} \quad \text { Substituting } \\
& =\frac{-1 \pm \sqrt{-7}}{2} \\
& =\frac{-1 \pm \sqrt{7} i}{2}=-\frac{1}{2} \pm \frac{\sqrt{7}}{2} i
\end{aligned}
$$

The solutions are $-\frac{1}{2}-\frac{\sqrt{7}}{2} i$ and $-\frac{1}{2}+\frac{\sqrt{7}}{2} i$, or $-\frac{1}{2} \pm \frac{\sqrt{7}}{2} i$.
45. $5 t^{2}-8 t=3$
$5 t^{2}-8 t-3=0$
We use the quadratic formula. Here $a=5, b=-8$, and $c=-3$.

$$
\begin{aligned}
t & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-8) \pm \sqrt{(-8)^{2}-4 \cdot 5(-3)}}{2 \cdot 5} \\
& =\frac{8 \pm \sqrt{124}}{10}=\frac{8 \pm 2 \sqrt{31}}{10} \\
& =\frac{2(4 \pm \sqrt{31})}{2 \cdot 5}=\frac{4 \pm \sqrt{31}}{5}
\end{aligned}
$$

The solutions are $\frac{4-\sqrt{31}}{5}$ and $\frac{4+\sqrt{31}}{5}$, or

Solve the second equation for l : $l=9-w$
Substitute $9-w$ for l in the first equation and solve for w.

$$
\begin{aligned}
(9-w) w & =20 \\
9 w-w^{2} & =20 \\
0 & =w^{2}-9 w+20 \\
0 & =(w-5)(w-4) \\
w=5 \text { or } w & =4
\end{aligned}
$$

If $w=5$, then $l=9-w$, or 4 . If $w=4$, then $l=9-4$, or 5 . Since length is usually considered to be longer than width, we have the solution $l=5$ and $w=4$, or (5,4).
Check. If $l=5$ and $w=4$, the area is $5 \cdot 4$, or 20 . The perimeter is $2 \cdot 5+2 \cdot 4$, or 18 . The numbers check.
State. The length of the brochure is 5 in . and the width is 4 in .
63. Familiarize. We make a drawing of the dog run. Let $l=$ the length and $w=$ the width.

Since it takes 210 yd of fencing to enclose the run, we know that the perimeter is 210 yd .

Translate.

Perimeter: $2 l+2 w=210$, or $l+w=105$
Area: $l w=2250$
Carry out. We solve the system:
Solve the first equation for l : $l=105-w$
Substitute $105-w$ for l in the second equation and solve for w.

$$
\begin{aligned}
(105-w) w & =2250 \\
105 w-w^{2} & =2250 \\
0 & =w^{2}-105 w+2250 \\
0 & =(w-30)(w-75) \\
w=30 \text { or } w & =75
\end{aligned}
$$

If $w=30$, then $l=105-30$, or 75 . If $w=75$, then $l=105-75$, or 30 . Since length is usually considered to be longer than width, we have the solution $l=75$ and $w=30$, or $(75,30)$.
Check. If $l=75$ and $w=30$, the perimeter is $2 \cdot 75+2 \cdot 30$, or 210 . The area is $75(30)$, or 2250 . The numbers check.
State. The length is 75 yd and the width is 30 yd .
65. Familiarize. We first make a drawing. Let $l=$ the length and $w=$ the width.

Translate.

Area: $l w=\sqrt{3}$
From the Pythagorean theorem: $l^{2}+w^{2}=2^{2}$
Carry out. We solve the system of equations.
We first solve equation (1) for w.

$$
\begin{aligned}
l w & =\sqrt{3} \\
w & =\frac{\sqrt{3}}{l}
\end{aligned}
$$

Then we substitute $\frac{\sqrt{3}}{l}$ for w in equation 2 and solve for l.

$$
\begin{aligned}
& l^{2}+\left(\frac{\sqrt{3}}{l}\right)^{2}=4 \\
& l^{2}+\frac{3}{l^{2}}=4 \\
& l^{4}+3=4 l^{2} \\
& l^{4}-4 l^{2}+3=0 \\
& u^{2}-4 u+3=0 \quad \text { Letting } u=l^{2} \\
&(u-3)(u-1)=0 \\
& u=3 \text { or } u=1
\end{aligned}
$$

We now substitute l^{2} for u and solve for l.

$$
\begin{array}{rlrlrl}
l^{2} & =3 & & \text { or } & l^{2} & =1 \\
l & = \pm \sqrt{3} & \text { or } & l & = \pm 1
\end{array}
$$

Measurements cannot be negative, so we only need to consider $l=\sqrt{3}$ and $l=1$. Since $w=\sqrt{3} / l$, if $l=\sqrt{3}, w=1$ and if $l=1, w=\sqrt{3}$. Length is usually considered to be longer than width, so we have the solution $l=\sqrt{3}$ and $w=1$, or $(\sqrt{3}, 1)$.
Check. If $l=\sqrt{3}$ and $w=1$, the area is $\sqrt{3} \cdot 1=\sqrt{3}$. Also $(\sqrt{3})^{2}+1^{2}=3+1=4=2^{2}$. The numbers check.
State. The length is $\sqrt{3} \mathrm{~m}$, and the width is 1 m .
67. Familiarize. We let $x=$ the length of a side of one test plot and $y=$ the length of a side of the other plot. Make a drawing.

Translate.

The sum of the areas is $832 \mathrm{ft}^{2}$

The difference of the areas is $320 \mathrm{ft}^{2}$.

Carry out. We solve the system of equations.

