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2 Convex sets

• Let c1 be a vector in the plane defined by a1 and a2, and orthogonal to a2. For
example, we can take

c1 = a1 − aT
1 a2

‖a2‖2
2

a2.

Then x ∈ S2 if and only if

−|cT
1 a1| ≤ cT

1 x ≤ |cT
1 a1|.

• Similarly, let c2 be a vector in the plane defined by a1 and a2, and orthogonal
to a1, e.g.,

c2 = a2 − aT
2 a1

‖a1‖2
2

a1.

Then x ∈ S3 if and only if

−|cT
2 a2| ≤ cT

2 x ≤ |cT
2 a2|.

Putting it all together, we can describe S as the solution set of 2n linear inequalities

vT
k x ≤ 0, k = 1, . . . , n− 2

−vT
k x ≤ 0, k = 1, . . . , n− 2
cT1 x ≤ |cT

1 a1|
−cT

1 x ≤ |cT
1 a1|

cT2 x ≤ |cT
2 a2|

−cT
2 x ≤ |cT

2 a2|.

(b) S is a polyhedron, defined by linear inequalities xk ≥ 0 and three equality con-
straints.

(c) S is not a polyhedron. It is the intersection of the unit ball {x | ‖x‖2 ≤ 1} and the
nonnegative orthant Rn

+. This follows from the following fact, which follows from
the Cauchy-Schwarz inequality:

xT y ≤ 1 for all y with ‖y‖2 = 1 ⇐⇒ ‖x‖2 ≤ 1.

Although in this example we define S as an intersection of halfspaces, it is not a
polyhedron, because the definition requires infinitely many halfspaces.

(d) S is a polyhedron. S is the intersection of the set {x | |xk| ≤ 1, k = 1, . . . , n} and
the nonnegative orthant Rn

+. This follows from the following fact:

xT y ≤ 1 for all y with

n∑

i=1

|yi| = 1 ⇐⇒ |xi| ≤ 1, i = 1, . . . , n.

We can prove this as follows. First suppose that |xi| ≤ 1 for all i. Then

xT y =
∑

i

xiyi ≤
∑

i

|xi||yi| ≤
∑

i

|yi| = 1

if
∑

i
|yi| = 1.

Conversely, suppose that x is a nonzero vector that satisfies xT y ≤ 1 for all y with∑
i
|yi| = 1. In particular we can make the following choice for y: let k be an index

for which |xk| = maxi |xi|, and take yk = 1 if xk > 0, yk = −1 if xk < 0, and yi = 0
for i 6= k. With this choice of y we have

xT y =
∑

i

xiyi = ykxk = |xk| = max
i

|xi|.
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2 Convex sets

(c) A wedge, i.e., {x ∈ Rn | aT
1 x ≤ b1, a

T
2 x ≤ b2}.

(d) The set of points closer to a given point than a given set, i.e.,

{x | ‖x− x0‖2 ≤ ‖x− y‖2 for all y ∈ S}

where S ⊆ Rn.

(e) The set of points closer to one set than another, i.e.,

{x | dist(x, S) ≤ dist(x, T )},

where S, T ⊆ Rn, and

dist(x, S) = inf{‖x− z‖2 | z ∈ S}.

(f) [HUL93, volume 1, page 93] The set {x | x+ S2 ⊆ S1}, where S1, S2 ⊆ Rn with S1

convex.

(g) The set of points whose distance to a does not exceed a fixed fraction θ of the
distance to b, i.e., the set {x | ‖x − a‖2 ≤ θ‖x − b‖2}. You can assume a 6= b and
0 ≤ θ ≤ 1.

Solution.

(a) A slab is an intersection of two halfspaces, hence it is a convex set (and a polyhedron).

(b) As in part (a), a rectangle is a convex set and a polyhedron because it is a finite
intersection of halfspaces.

(c) A wedge is an intersection of two halfspaces, so it is convex set. It is also a polyhe-
dron. It is a cone if b1 = 0 and b2 = 0.

(d) This set is convex because it can be expressed as

⋂

y∈S

{x | ‖x− x0‖2 ≤ ‖x− y‖2},

i.e., an intersection of halfspaces. (For fixed y, the set

{x | ‖x− x0‖2 ≤ ‖x− y‖2}

is a halfspace; see exercise 2.9).

(e) In general this set is not convex, as the following example in R shows. With S =
{−1, 1} and T = {0}, we have

{x | dist(x, S) ≤ dist(x, T )} = {x ∈ R | x ≤ −1/2 or x ≥ 1/2}

which clearly is not convex.

(f) This set is convex. x+ S2 ⊆ S1 if x+ y ∈ S1 for all y ∈ S2. Therefore

{x | x+ S2 ⊆ S1} =
⋂

y∈S2

{x | x+ y ∈ S1} =
⋂

y∈S2

(S1 − y),

the intersection of convex sets S1 − y.

(g) The set is convex, in fact a ball.

{x | ‖x− a‖2 ≤ θ‖x− b‖2}
= {x | ‖x− a‖2

2 ≤ θ2‖x− b‖2
2}

= {x | (1 − θ2)xTx− 2(a− θ2b)Tx+ (aT a− θ2bT b) ≤ 0}
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Chapter 3

Convex functions

https://answersun.com/download/solutions-manual-of-convex-optimization-by-boyd-vandenberghe-1st-edition/

Download full file from answersun.com



3 Convex functions

3.29 Representation of piecewise-linear convex functions. A function f : Rn → R, with
dom f = Rn, is called piecewise-linear if there exists a partition of Rn as

R
n = X1 ∪X2 ∪ · · · ∪XL,

where intXi 6= ∅ and intXi ∩ intXj = ∅ for i 6= j, and a family of affine functions
aT
1 x+ b1, . . . , aT

Lx+ bL such that f(x) = aT
i x+ bi for x ∈ Xi.

Show that this means that f(x) = max{aT
1 x+ b1, . . . , a

T
Lx+ bL}.

Solution. By Jensen’s inequality, we have for all x, y ∈ dom f , and t ∈ [0, 1],

f(y + t(x− y)) ≤ f(y) + t(f(x) − f(y)),

and hence

f(x) ≥ f(y) +
f(y + t(x− y)) − f(y)

t
.

Now suppose x ∈ Xi. Choose any y ∈ intXj , for some j, and take t sufficiently small so
that y + t(x− y) ∈ Xj . The above inequality reduces to

aT
i x+ bi ≥ aT

j y + bj +
(aT

j (y + t(x− y)) + bj − aT
j y − bj)

t
= aT

j x+ bj .

This is true for any j, so aT
i x+ bi ≥ maxj=1,...,L(aT

j x+ bj). We conclude that

aT
i x+ bi = max

j=1,...,L
(aT

j x+ bj).

3.30 Convex hull or envelope of a function. The convex hull or convex envelope of a function
f : Rn → R is defined as

g(x) = inf{t | (x, t) ∈ conv epi f}.

Geometrically, the epigraph of g is the convex hull of the epigraph of f .

Show that g is the largest convex underestimator of f . In other words, show that if h is
convex and satisfies h(x) ≤ f(x) for all x, then h(x) ≤ g(x) for all x.

Solution. It is clear that g is convex, since by construction its epigraph is a convex set.

Let h be a convex lower bound on f . Since h is convex, epih is a convex set. Since h is a
lower bound on f , epi f ⊆ epih. By definition the convex hull of a set is the intersection
of all the convex sets that contain the set. It follows that conv epi f = epi g ⊆ epih,
i.e., g(x) ≥ h(x) for all x.

3.31 [Roc70, page 35] Largest homogeneous underestimator. Let f be a convex function. Define
the function g as

g(x) = inf
α>0

f(αx)

α
.

(a) Show that g is homogeneous (g(tx) = tg(x) for all t ≥ 0).

(b) Show that g is the largest homogeneous underestimator of f : If h is homogeneous
and h(x) ≤ f(x) for all x, then we have h(x) ≤ g(x) for all x.

(c) Show that g is convex.

Solution.

(a) If t > 0,

g(tx) = inf
α>0

f(αtx)

α
= t inf

α>0

f(αtx)

tα
= tg(x).

For t = 0, we have g(tx) = g(0) = 0.
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Exercises

Exercises

Estimation

7.1 Linear measurements with exponentially distributed noise. Show how to solve the ML
estimation problem (7.2) when the noise is exponentially distributed, with density

p(z) =

{
(1/a)e−z/a z ≥ 0
0 z < 0,

where a > 0.

Solution. Solve the LP
minimize 1T (y −Ax)
subject to Ax � y.

7.2 ML estimation and `∞-norm approximation. We consider the linear measurement model
y = Ax+ v of page 352, with a uniform noise distribution of the form

p(z) =

{
1/(2α) |z| ≤ α
0 |z| > α.

As mentioned in example 7.1, page 352, any x that satisfies ‖Ax − y‖∞ ≤ α is a ML
estimate.

Now assume that the parameter α is not known, and we wish to estimate α, along with
the parameters x. Show that the ML estimates of x and α are found by solving the
`∞-norm approximation problem

minimize ‖Ax− y‖∞,

where aT
i are the rows of A.

Solution. The log-likelihood function is

l(x, α) =

{
m log(1/2α) ‖Ax− y‖∞ ≤ α
−∞ otherwise.

Maximizing over α and y is equivalent to solving the `∞-norm problem.

7.3 Probit model. Suppose y ∈ {0, 1} is random variable given by

y =

{
1 aTu+ b+ v ≤ 0
0 aTu+ b+ v > 0,

where the vector u ∈ Rn is a vector of explanatory variables (as in the logistic model
described on page 354), and v is a zero mean unit variance Gaussian variable.

Formulate the ML estimation problem of estimating a and b, given data consisting of
pairs (ui, yi), i = 1, . . . , N , as a convex optimization problem.

Solution. We have

prob(y = 1) = Q(aTu+ b), prob(y = 0) = 1 −Q(aTu+ b) = P (−aTu− b)

where

Q(z) =
1√
2π

∫ ∞

z

et2/2 dt.

The log-likelihood function is

l(a, b) =
∑

yi=1

logQ(aTui + b) +
∑

yi=0

logQ(−aTui − b),

which is a concave function of a and b.
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11 Interior-point methods

We notice that the lower bound is equal (or very close) to p? in 10 cases, and never
less than about 15% below p?.

We also generate a larger problem instance, with n = 100. The optimal value of the
relaxation is −1687.5. The lower bound from the eigenvalue decomposition of W
(see remark 5.1) is nλmin(W ) = −1898.4.

(b) We first try the heuristic on the family of 100 problems with n = 10. The heuristic
gave the correct solution in 70 instances. For the larger problem, the heuristic gives
the upper bound −1336.5. At this point we can say that the optimal value of the
larger problem lies between −1336.5 and −1687.5.

(c) We first try this heuristic, with K = 10, on the family of 100 problems with n = 10.
The heuristic gave the correct solution in 88 instances.

We plot below a histogram of the objective obtained by the randomized heuristic,
over 1000 samples.
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Many of these samples have an objective value larger than the one found in part (b)
above, but some have a lower cost. The minimum value is −1421.7, so p? lies between
−1421.7 and −1687.5.

(d) The contribution of xj to the cost is (
∑n

i=1
Wijxi)xj . If this number is positive,

then switching the sign of xj will decrease the objective by 2
∑n

i=1
Wijxi.

We apply the greedy heuristic to the larger problem instance. For x = 1, the cost
is reduced from 13.6 to −1344.8. For the solution from part (b), the cost is reduced
from −1336.5 to −1440.6. For the solution from part (b), the cost is reduced from
−1421.7 to −1440.6.

11.24 Barrier and primal-dual interior-point methods for quadratic programming. Implement
a barrier method, and a primal-dual method, for solving the QP (without equality con-
straints, for simplicity)

minimize (1/2)xTPx+ qTx
subject to Ax � b,

with A ∈ Rm×n. You can assume a strictly feasible initial point is given. Test your codes
on several examples. For the barrier method, plot the duality gap versus Newton steps.
For the primal-dual interior-point method, plot the surrogate duality gap and the norm
of the dual residual versus iteration number.

Solution. The first figure shows the progress (duality gap) versus Newton iterations for
the barrier method, applied to a randomly generated instance with n = 100 variables and
m = 200 constraints. We use µ = 20, α = 0.01, β = 0.5, and t(0) = 1. We choose b � 0,
and use x(0) = 0.
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