Solutions Manual

Discrete-Event System Simulation
 Third Edition

Jerry Banks
John S. Carson II
Barry L. Nelson
David M. Nicol

August 31, 2000

Contents

1 Introduction to Simulation 1
2 Simulation Examples 5
3 General Principles 16
4 Simulation Software 17
5 Statistical Models in Simulation 18
6 Queueing Models 32
7 Random-Number Generation 39
8 Random-Variate Generation 46
9 Input Modeling 51
10 Verification and Validation of Simulation Models 55
11 Output Analysis for a Single Model 57
12 Comparison and Evaluation of Alternative System Designs 60
13 Simulation of Manufacturing and Material Handling Systems 65
14 Simulation of Computer Systems 66
33. Let X be the lifetime of the card in months. The Erlang distribution gives the desired probability where

$$
\beta=K=4, K \theta=4(1 / 16)=\frac{1}{4}, \text { and } X=24
$$

Then

$$
F(24)=1-\sum_{i=o}^{3} \frac{e^{6} 6^{i}}{i!}=1-.151=.849
$$

The complement gives the desired probability, or

$$
P(X \geq 2 \text { years })=1-.849=.151
$$

34. Let X be defined as the number on a license tag. Then X is discrete uniform ($a=100, b=999$) with cumulative distribution function

$$
F(x)=(x-99) / 900, \quad x=100,101, \ldots, 999
$$

(a) The probability that two tag numbers are 500 or higher is

$$
[P(X \geq 500)]^{2}=[1-F(499)]^{2}=.5556^{2}=.3086
$$

(b) Let Y be defined as the sum of two license tag numbers. Then Y is discrete triangular which can be approximated by

$$
F(y)= \begin{cases}(y-a)^{2} /[(b-a)(c-a)], & a \leq y \leq b \\ 1-\left[(c-y)^{2} /[(c-a)(c-b)]\right], & b \leq y \leq c\end{cases}
$$

where $a=2(100)=200, c=2(999)=1998$, and $b=(1998+200) / 2=1099$.
The probability that the sum of the next two tags is 1000 or higher is

$$
P(Y \geq 1000)=1-F(999)=.6050
$$

35. A normally distributed random variable, X, with a mean of 10 , a variance of 4 , and the following properties

$$
P(a<X<b)=.90 \text { and }|\mu-a|=|\mu-b|
$$

exists as follows

$$
\begin{aligned}
P(X<b)=P(X>a) & =.95 \text { due to symmetry } \\
\Phi[(b-10) / 2] & =.95 b=13.3 \\
1-\Phi[(a-10) / 2] & =.95 a=6.7
\end{aligned}
$$

36. Solution to Exercise 36:

Normal (10, 4)

$$
\begin{aligned}
F(8)-F(6) & =F\left(\frac{8-10}{2}\right)-F\left(\frac{6-10}{2}\right) \\
& =F(-1)-F(-2)=(1-.84134)-(1-.97725) \\
& =.13591
\end{aligned}
$$

$$
X= \begin{cases}1+\sqrt{27 R}, & 0 \leq R \leq 9 / 27 \\ 10-\sqrt{54(1-R)}, & 9 / 27<R \leq 1\end{cases}
$$

4. Triangular distribution with $a=1, c=10$ and $E(X)=4$. Since $(a+b+c) / 3=E(X)$, the mode is at $b=1$. Thus, the height of the triangular pdf is $h=2 / 9$. (See solution to previous problem. Note that the triangle here is a right triangle.)

Step 1: Find $\operatorname{cdf} F(x)=$ total area from 1 to x.

$$
=1-(\text { total area from } x \text { to } 10) .
$$

By similar triangles, $f(x) / h=(10-x) /(10-1)$, so

$$
F(x)=1-(10-x) f(x) / 2=1-(10-x)^{2} / 81, \quad 1 \leq x \leq 10 .
$$

Step 2: $\operatorname{Set} F(X)=R$ on $1 \leq X \leq 10$.
Step 3: $X=10-\sqrt{81(1-R)}, \quad 0 \leq R \leq 1$
5. Solution to Exercise 5:

$$
X=\left\{\begin{array}{cc}
6(R-1 / 2) & 0 \leq R \leq 1 / 2 \\
\sqrt{32(R-1 / 2)} & 1 / 2 \leq R \leq 1
\end{array}\right.
$$

6. $X=2 R^{1 / 4}, \quad 0 \leq R \leq 1$
7. Solution to Exercise 7:

$$
\begin{aligned}
& F(x)=x^{3} / 27, \quad 0 \leq x \leq 3 \\
& X=3 R^{1 / 3}, \quad 0 \leq R \leq 1
\end{aligned}
$$

8. Solution to Exercise 8:

Step 1:

$$
F(x)= \begin{cases}x / 3, & 0 \leq x \leq 2 \\ 2 / 3+(x-2) / 24, & 2<x \leq 10\end{cases}
$$

Step 2: Set $F(X)=R$ on $0 \leq X \leq 10$.
Step 3:

$$
X= \begin{cases}3 R, & 0 \leq R \leq 2 / 3 \\ 2+24(R-2 / 3)=24 R-14, & 2 / 3<R \leq 1\end{cases}
$$

9. Use Inequality (8.14) to conclude that, for R given, X will assume the value x in $R_{X}=\{1,2,3,4\}$ provided

$$
F(x-1)=\frac{(x-1) x(2 x-1)}{180}<R \leq \frac{x(x+1)(2 x+1)}{180}=F(x)
$$

By direct computation, $F(1)=6 / 180=.033, F(2)=30 / 180=.167, F(3)=42 / 180=.233, F(4)=1$. Thus, X can be generated by the table look-up procedure using the following table:

x	1	2	3	4
$F(x)$.033	.167	.233	1

