

Solution Manual

to accompany
Introduction to Electric Circuits, 6e

By R. C. Dorf and J. A. Svoboda

Table of Contents

Chapter 1 Electric Circuit Variables

Chapter 2 Circuit Elements
Chapter 3 Resistive Circuits
Chapter 4 Methods of Analysis of Resistive Circuits
Chapter 5 Circuit Theorems
Chapter 6 The Operational Amplifier
Chapter 7 Energy Storage Elements
Chapter 8 The Complete Response of RL and RC Circuits
Chapter 9 The Complete Response of Circuits with Two Energy Storage Elements
Chapter 10 Sinusoidal Steady-State Analysis
Chapter 11 AC Steady-State Power
Chapter 12 Three-Phase Circuits
Chapter 13 Frequency Response
Chapter 14 The Laplace Transform
Chapter 15 Fourier Series and Fourier Transform
Chapter 16 Filter Circuits
Chapter 17 Two-Port and Three-Port Networks

P5.5-4

Find R_{t} :

$$
R_{t}=\frac{12(10+2)}{12+(10+2)}=6 \Omega
$$

Write mesh equations to find $v_{o c}$:

Mesh equations:

$$
\begin{aligned}
& 12 i_{1}+10 i_{1}-6\left(i_{2}-i_{1}\right)=0 \\
& 6\left(i_{2}-i_{1}\right)+3 i_{2}-18=0 \\
& 28 i_{1}=6 i_{2} \\
& 9 i_{2}-6 i_{1}=18 \\
& 36 i_{1}=18 \Rightarrow i_{1}=\frac{1}{2} \mathrm{~A} \\
& i_{2}=\frac{14}{3}\left(\frac{1}{2}\right)=\frac{7}{3} \mathrm{~A}
\end{aligned}
$$

Finally, $\quad v_{o c}=3 i_{2}+10 i_{1}=3\left(\frac{7}{3}\right)+10\left(\frac{1}{2}\right)=12 \mathrm{~V}$
(checked using LNAP 8/15/02)

P6.4-3

The voltages at the input nodes of an ideal op amp are equal so $v_{a}=-2 \mathrm{~V}$.

Apply KCL at node a :

$$
\frac{v_{o}-(-2)}{8000}+\frac{12-(-2)}{4000}=0 \Rightarrow v_{o}=-30 \mathrm{~V}
$$

Apply Ohm's law to the $8 \mathrm{k} \Omega$ resistor

$$
i_{o}=\frac{-2-v_{o}}{8000}=3.5 \mathrm{~mA}
$$

(checked using LNAP 8/16/02)

P6.4-4

The voltages at the input nodes of an ideal op amp are equal so $v=5 \mathrm{~V}$.

Apply KCL at the inverting input node of the op amp:
$-\left(\frac{v_{a}-5}{10000}\right)-0.1 \times 10^{-3}-0=0 \Rightarrow v_{\mathrm{a}}=4 \mathrm{~V}$
Apply Ohm's law to the $20 \mathrm{k} \Omega$ resistor

$$
i=\frac{v_{a}}{20000}=\frac{1}{5} \mathrm{~mA}
$$

(checked using LNAP 8/16/02)

P6.4-5

The voltages at the input nodes of an ideal op amp are equal so $v_{a}=0 \mathrm{~V}$. Apply KCL at node a :

$$
\begin{gathered}
-\left(\frac{v_{o}-0}{3000}\right)-\left(\frac{12-0}{4000}\right)-2 \cdot 10^{-3}=0 \\
\Rightarrow v_{o}=-15 \mathrm{~V}
\end{gathered}
$$

Apply KCL at the output node of the op amp:
$i_{o}+\frac{v_{o}}{6000}+\frac{v_{o}}{3000}=0 \Rightarrow i_{o}=7.5 \mathrm{~mA}$

(checked using LNAP 8/16/02)

P8.3-6

Before the switch opens, $v_{o}(t)=5 \mathrm{~V} \Rightarrow v_{o}(0)=5 \mathrm{~V}$. After the switch opens the part of the circuit connected to the capacitor can be replaced by it's Norton equivalent circuit to get:

Therefore $\tau=\frac{5}{20 \times 10^{3}}=0.25 \mathrm{~ms}$.
Next, $i_{\mathrm{L}}(t)=i_{s c}+\left(i_{\mathrm{L}}(0)-i_{s c}\right) e^{-\frac{t}{\tau}}=0.5-0.25 e^{-4000 t} \mathrm{~mA}$ for $t>0$

Finally, $v_{o}(t)=5 \frac{d}{d t} i_{L}(t)=5 e^{-4000 t} \mathrm{~V} \quad$ for $t>0$

P8.3-7

At $t=0^{-}$(steady-state)

Since the input to this circuit is constant, the inductor will act like a short circuit when the circuit is at steady-state:

for $t>0$

$$
i_{L}(t)=i_{L}(0) e^{-(R / L) t}=6 e^{-20 t} \mathrm{~A}
$$

Section 11-10: The Ideal Transformer

P11.10-1

P11.10-2
(a) $\quad \mathbf{V}_{0}=\left(5 \times 10^{-3}\right)(10,000)=50 \mathrm{~V}$

$$
n=\frac{N_{2}}{N_{1}}=\frac{\mathbf{V}_{0}}{\mathbf{V}_{1}}=\frac{50}{10}=5
$$

(b)

$$
R_{\mathrm{ab}}=\frac{1}{n^{2}} R_{2}=\frac{1}{25}\left(10 \times 10^{3}\right)=400 \Omega
$$

(c) $\quad \mathbf{I}_{\mathrm{s}}=\frac{10}{R_{\mathrm{ab}}}=\frac{10}{400}=0.025 \mathrm{~A}=25 \mathrm{~mA}$

P15.8-6

Rather than find the Fourier Series of $v(t)$ directly, consider the signal $\hat{v}(t)$ shown above.
These two signals are related by

$$
v(t)=\hat{v}(t-1)-6
$$

since $v(t)$ is delayed by 1 ms and shifted down by 6 V .

The Fourier series of $\hat{v}(t)$ is obtained as follows:

$$
\left.\left.\left.\begin{array}{rl}
T & =4 \mathrm{~ms} \Rightarrow \omega_{0}=\frac{2 \pi \text { radians }}{4 \mathrm{~ms}}=\frac{\pi}{2} \mathrm{rad} / \mathrm{ms} \\
\hat{\mathrm{a}}_{\mathrm{n}} & =0 \text { because the average value of } \hat{v}(t)=0 \\
\hat{b}_{n} & =\frac{1}{2} \int_{0}^{4}(6-3 t) \sin \left(n \frac{\pi}{2} t\right) d t \quad \text { because } \hat{v}(t) \text { is an odd function. } \\
& =3 \int_{0}^{4} \sin \left(n \frac{\pi}{2} t\right) d t-\frac{3}{2} \int_{0}^{4} t \sin \left(n \frac{\pi}{2} t\right) d t \\
& =\left.3 \frac{-\cos \left(n \frac{\pi}{2} t\right)}{n \frac{\pi}{2}}\right|_{0} ^{4}-\frac{3}{2}\left[\left(\frac{1}{n^{2} \pi^{2}}\right.\right. \\
4
\end{array}\right) \sin \left(n \frac{\pi}{2} t\right)-\left(\frac{n \pi}{2} t\right) \cos \left(n \frac{\pi}{2} t\right)\right]_{0}^{4}\right]
$$

Finally,

$$
\hat{v}(t)=\sum_{n=1}^{\infty} \frac{12}{n \pi} \sin n \frac{\pi}{2} t
$$

The Fourier series of $v(t)$ is obtained from the Fourier series of $\hat{v}(t)$ as follows:

$$
v(t)=-6+\sum_{n=1}^{\infty} \frac{12}{n \pi} \sin n \frac{\pi}{2}(t-1)=-6+\sum_{n=1}^{\infty} \frac{12}{n \pi} \sin \left(n \frac{\pi}{2} t-n \frac{\pi}{2}\right)
$$

where t is in ms. Equivalently,

