SOLUTIONS TO THE EXERCISES IN

LIKELIHOOD METHODS IN STATISTICS

Thomas A. Severini
Department of Statistics
Northwestern University
Evanston, Illinois

©2001 Thomas A. Severini. All rights reserved.

c.
$$V_{\theta}(Y) = -k''(\theta)$$
 and $V_{\theta}(X) = -\tilde{k}''(\theta)$. Hence, if $V_{\theta}(Y) = V_{\theta}(X)$ for all θ ,
$$k(\theta) = \tilde{k}(\theta) + C_1\theta + C_2$$

where C_1 and C_2 are constants. It follows that

$$K_Y(t) = K_X(t) + C_1 t$$

and, hence, Y has the same distribution as $X + C_1$. For instance, if Y is normally distributed with mean θ and variance 1 and X is normally distributed with mean $\theta + 1$ and variance 1, then the densities of Y and X satisfy the conditions given but Y and X do not have the same distribution.

1.3 Show that the natural parameter space of an exponential family model is convex.

Solution Let

$$\exp\{s(y)^T \eta - k(\eta) + D(y)\}\$$

denote the density of the exponential family distribution. A parameter value η is in the natural parameter space provided that

$$\int \exp\{s(y)^T \eta + D(y)\} dy < \infty.$$

Suppose η_1 and η_2 are in the natural parameter space and let 0 < t < 1. Then

$$\int \exp\{s(y)^T[t\eta_1+(1-t)\eta_2]+D(y)\}dy = \int \exp\{ts(y)^T\eta_1+(1-t)s(y)^T\eta_2+D(y)\}dy.$$

Since the function $\exp(x)$ is convex

$$\int \exp\{ts(y)^T \eta_1 + (1-t)s(y)^T \eta_2 + D(y)\} dy$$

$$\leq \int [t \exp\{s(y)^T \eta_1\} + (1-t) \exp\{s(y)^T \eta_2\}] \exp\{D(y)\} dy$$

$$\leq t \int \exp\{s(y)^T \eta_1 + D(y)\} dy + (1-t) \int \exp\{s(y)^T \eta_2 + D(y)\} dy < \infty$$

so that $t\eta_1 + (1-t)\eta_2$ is in the natural parameter space.

- 1.4 Let Y denote a nonnegative continuous random variable with density p. Suppose that Y is observed only if $Y \leq y_o$ where y_o is a known constant.
 - a. Find the density function of Y given that Y is observed; denote this density by p_o .
 - **b.** Suppose that the density p is in the one-parameter exponential family. Under what conditions, if any, is p_o also in the one-parameter exponential family?

a. Find $Pr(X_i = 0 | X_{i-1} = 1)$, $Pr(X_i = 1 | X_{i-1} = 0)$, $Pr(X_i = 0 | X_{i-1} = 0)$.

b. Find the requirements on λ so that this describes a valid probability distribution for X_1, \ldots, X_n .

c. Show that $Pr(X_j = x_j | X_{j-1} = x_{j-1}), j = 2, \ldots, n$, may be written

$$f(x_j,x_{j-1}) = \lambda^{x_jx_{j-1}}(1-\lambda)^{x_{j-1}(1-x_j} \big[\frac{(1-\lambda)\phi}{(1-\phi)}\big]^{(1-x_{j-1})x_j} \big[\frac{(1-2\phi+\lambda\phi)}{(1-\phi)}\big]^{(1-x_{j-1})(1-x_j)}$$

for $x_{j-1} = 0, 1$ and $x_j = 0, 1$.

d. Suppose that ϕ and λ are unknown parameters. Find a three-dimensional sufficient statistic for the model.

Solution

a. Since X_j only takes the values 0 and 1,

$$Pr(X_j = 0 | X_{j-1} = 1) = 1 - Pr(X_j = 1 | X_{j-1} = 1) = 1 - \lambda.$$

Since

$$Pr(X_j = 1)$$
= $Pr(X_j = 1 | X_{j-1} = 1) Pr(X_{j-1} = 1) + Pr(X_j = 1 | X_{j-1} = 0) Pr(X_{j-1} = 0)$
= $\lambda \phi + Pr(X_j = 1 | X_{j-1} = 0) (1 - \phi)$

it follows that

$$Pr(X_j = 1 | X_{j-1} = 0) = \frac{\phi}{1 - \phi} (1 - \lambda)$$

and, hence, that

$$Pr(X_j = 0 | X_{j-1} = 0) = 1 - \frac{\phi}{1 - \phi} (1 - \lambda) = \frac{1 - 2\phi + \phi\lambda}{1 - \phi}.$$

b. Given that $0 < \phi < 1$, necessary and sufficient conditions for this to describe a valid probability distribution for X_1, \ldots, X_n are that $Pr(X_j = 1 | X_{j-1} = 1)$ and $Pr(X_j = 1 | X_{j-1} = 0)$ are in the interval [0, 1]. Hence, we must have $0 \le \lambda \le 1$ and

$$\lambda \geq 1 - \frac{1-\phi}{\phi} = \frac{2\phi-1}{\phi};$$

that is, λ must satisfy

$$\max\{0,\frac{2\phi-1}{\phi}\} \le \lambda \le 1.$$

c. This is easily verified by direct calculation.