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CHAPTER 1. KINEMATICS, CONSERVATION EQUATIONS, AND BOUNDARY
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d
N, (1.84)
0z
Substituting this in, find
1 ddy 0
—— = +=—u,=0. 1.85
202 07 + 0z = (1.85)
Rearrange to get
0 100
oy == 1.86
PR ronozy (1.86)
and then 3 3 13
P . 1.87
2 o ( /LB/LW) (1.87)
From this, we obtain 5
ai/‘: — ., (1.88)
so we find that
87\11 = U, (1.89)
0z
oy
= = —2u, (1.90)

satisfies the stream function requirements. Also, both of these relations could be
multiplied by any constant, and conservation of mass would still be satisfied.

1.7 Consider the following two velocity gradient tensors:

010
@ Vi=|1 0 0
10 0 0
1 0 0
(b) Vi=|0 —1 0
0 0 0

Draw the streamlines for each velocity gradient tensor. With respect to the coordinate
axes, identify which of these exhibits extensional strain and which exhibits shear
strain. Following this, redraw the streamlines for each on axes that have been rotated
45° counterclockwise, using x’ = x/ﬂ+y/ﬁ and y = —x/ﬁ+y/ﬁ. Are your
conclusions about extensional and shear strain the same for the flow once you have
rotated the axes? Do the definitions of extensional and shear strain depend on the
coordinate system?
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%u *u d Jdv %u d dw
%?+G?+$$>+5?+E$
9 du |, 9% %y Py Jd dw
n (aa*yJFW)‘anTz @‘Fa?a*y (1.105)
9 du | Pw 9 dv | Pw 9w
(aa+aﬂ+($&+®ﬂ+&f

from equality of mixed partials and incompressibility, can subtract away half of the
terms:
u | *u | Pu
rraTe
n| S++ (1.106)
Pw | %w

9*w
wtor Tz

1.13 For a one dimensional flow given by # = u(y), the strain rate magnitude is given
by %3—“ and the vorticity magnitude is given by %. Are the strain rate and vorticity
y y

proportional to each other in general? If not, why are they proportional in this case?

Solution:

the solution for this problem is not available ‘

1.14 Write out the Navier—Stokes equations in cylindrical coordinates (see Appendix D).
Simplify these equations for the case of plane symmetry.

Solution:

the solution for this problem is not available ‘

1.15 Write out the Navier—Stokes equations in cylindrical coordinates (see Appendix D).
Simplify these equations for the case of axial symmetry.

Solution:

the solution for this problem is not available ‘

1.16 Write out the Navier—Stokes equations in spherical coordinates (see Appendix D).
Simplify these equations for the case of axial symmetry.
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Figure 1.32: Deformation of a grid by a stagnation flow, y = Axy. In general, grid spacing
will be closer near origin and larger far from origin; this is not terribly clear from the sketch.
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Figure 1.33: Deformation of a grid by a pure shear flow, y = %By2.

Figure 1.34: Deformation of a grid by an irrotational vortex, y = Cln (x/xz + y2>.
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Solution:

complex elec displacement:

L L J
D+J/jo=D+— 5.113
D+J/jo ~+jw ( )
Lo . oE
D+J/jo=¢cE+— (5.114)
Jo
Dii/jo=(e+r 2 )E (5.115)
D+J/]jO= jo )= .
D+J/jo=¢E (5.116)

This complex electric displacement is a sum of two quantities: (1) the electric dis-
placement and (2) the ohmic current, offset by a 7t/2 phase lag and normalized by ®
to give it units of displacement rather than current.

divergence:
v <B+7/ '0)) _v.ps L (5.117)
D+/jo) =V -D+—> :
V- (D+J/j V.-D 1 %P 5.118
(D+Lfjo) =v-B- 550 G119
— - . o '—’_jiw
v (Q—i—l/]o))—v D o (5.119)
v-(z}+2/jm):v-1}—gg (5.120)
V- (D+1/jo) =pr—pr (5.121)
V. (D+Z/jm> —0. (5.122)

Thus, if we combine the electric displacement with the ohmic current with the 1/®
normalization and the 7/2 phase offset, the divergence of the sum of these two quan-
tities is zero. So V- gE‘ = 0. Thus the complex electric displacement obeys a simpler
law than the electric displacement or the ohmic current.

Note that this applies only if both charge density and electric field are sinusoidal. The
complex representations are valid because the equations are linear.
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8.6 Given particles of radius a and density p, and a fluid with viscosity = 1 x 1073 Pas
and density py, = 1 kg/m?, derive a relation for the terminal velocity of the particles
when subjected to Earth’s gravitational accleration (9.8 m/s?). If a 20-um-diameter
microchannel has an axis aligned normal to the gravitational axis and is filled with
a suspension of these particles, derive a relation for the time it would take for these
particles to settle to the bottom of the channel. Calculate the velocity and settling
time for

(a) 10-nm-diameter polystyrene beads (p, = 1300 kg/ m?),
(b) 1-um-diameter polystyrene beads (p, = 1300 kg/ m?),

(c) 2.5-um-diameter polystyrene beads (p, = 1300 kg/ m?),
(d) human leukocytes (12 um in diameter; p, = 1100 kg/m?).

Solution: The force on a particle is given by

4 1
F= gmﬁ (Pp—pw) = gﬂtd3 (Pp—Pw) - (8.75)

The viscous force on a particle is related to the velocity U by
F =6nUna =3nUnd. (8.76)
Setting these equal at the terminal velocity, we have
3nUnd = éndS (Pp— Pw) - (8.77)

Solving for U, we get an expression for the terminal velocity:

1

U=—
18n

d* (pp — pw) - (8.78)

The particles can be assumed to instantaneously achieve terminal velocity—this can
be confirmed by calculating the gravitational force to the particle mass to determine
the acceleration and estimating the time to equilibrate by dividing the acceleration by
the terminal velocity. Thus the time to settle is given by the distance (20 um) divided
by the terminal velocity.

This can then be calculated for the four particles.

8.7 Consider flow through a shallow microfabricated channel of uniform depth d with
a sharp 90° turn whose inside corner is located at the origin, depicted in Fig. 8.7.
Assume that the flow far from the corner is uniform across the width of the channel,
and assume that the channel can be approximated as being wide, so that the flow
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11.3 Given the electrophoretic mobilities in Table 11.1 and the definition of molar con-
ductivity in Eq. (11.24), calculate the molar conductivities of the following ions in
water:

(a) HY,
(b) OH™,
(c) LiT,
(d) SO,%

Solution:

’the solution for this problem is not available ‘

11.4 Consider the distribution of an ion of valence z in a 1D potential field @(y). Derive
the Einstein relation by

e writing the equilibrium distribution c(¢),
e writing the 1D Nernst—Planck equations for ion transport in the y direction, and

e showing that the zero-flux condition at equilibrium requires that the Einstein
relation hold.

Solution:

write ¢(¢). In terms of @, the concentration is

€ = Coo€XP [_;;(p} . (11.31)

write 1D Nernst-Planck eqs. The steady 1D Nernst—Planck equation is

oc 0 dc o0}
e 0=—— |—-D—= — - 11.32
We evaluate the first term by taking the derivative of c:
oc —zF 99 [—zF @]
—D—=—-D——¢Co . 11.33
dy RT oy =P | Rr | (11.33)
We expand the second term by writing out the expression for c:
o0 foL0) [—zF @]
— — = —UEP=Coo . 11.34
HEPC S = ~HEP 5 CooCXP RT | ( )
Micro- and Nanoscale Fluid Mechanics, (©) Brian J. Kirby 463 http://www.kirbyresearch.com/textbook

Download full file from answersun.com



https://answersun.com/download/
solutions-manual-of-micro-and-nanoscale-fluid-mechanics-transport-in-microfluidic-devices-by-kirby-1st-edition/

Micro- and Nanoscale Fluid Mechanics, (©) Brian J. Kirby http://www.kirbyresearch.com/textbook

The description of water models here is restricted to static charge models and ignores
charge-on-spring models, inducible dipole models, and fluctuating charge models, as well
as any aspect of quantum treatment of the water molecule. Sources that discuss water
models, a description of water properties, or the relation between these include [304, 305,
306, 307].

H.7 Exercises

H.1 Consider a pair potential given by

ep=o00 if Ar<a (H.29)
ex=kgT if a<Ar<2a (H.30)
ep =0 if 2a<Ar (H.31)

Calculate and plot the Mayer f function fy; for this potential.

Solution:

the solution for this problem is not available

H.2 Write a numerical routine to solve the Ornstein—Zernike equation with hypernetted-
chain closure to find the radial distribution function for a homogeneous Lennard—
Jones fluid.

Proceed as follows:

(a) Use an iterative technique that, in turn, uses the hypernetted-chain closure in
Eq. (H.17) to solve for fi. and the Ornstein—Zernike equation (H.16) to solve

for fyc.

(b) Start by setting fic(Ar) = fac(Ar) = 0 on a domain that ranges from Ar = 0 to
Ar=512c.

(c) In each step, define a new fi. by using the hypernetted-chain relation:

fienew(Ar) = —14exp[—ei(Ar) /kgT + fic oa(Ar) — fac(Ar)] . (H.32)

Note that e} (Ar) in this case is the Lennard—Jones potential.

(d) In each step, define a new fy. by Fourier-transforming fi. and fy., applying the
Fourier-transformed Ornstein—Zernike equation to get a new fy., and inverse
Fourier-transforming fj. to get a new fy.. We do this because the Fourier-
transformed Ornstein—Zernike equation is much easier to deal with (the spatial
integral becomes a product when Fourier transformed):

ﬁc (k) = fac (k) + pf:ic (k)ftc (k) . (H.33)
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