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4 Chapter 1 A Preview of Applications and Techniques

Exercises 1.2

1. We have

∂

∂t

(
∂u

∂t

)
= − ∂

∂t

(
∂v

∂x

)
and

∂

∂x

(
∂v

∂t

)
= − ∂

∂x

(
∂u

∂x

)
.

So
∂2u

∂t2
= − ∂2v

∂t∂x
and

∂2v

∂x∂t
= −∂2u

∂x2
.

Assuming that ∂2v
∂t∂x = ∂2v

∂x∂t, it follows that ∂2u
∂t2 = ∂2u

∂x2 , which is the one dimensional
wave equation with c = 1. A similar argument shows that v is a solution of the one
dimensional wave equation.
2. (a) For the wave equation in u, the appropriate initial conditions are u(x, 0) =
f(x), as given, and ut(x, 0) = −vx(x, 0) = h′(x). (b) For the wave equation in
v, the appropriate initial conditions are v(x, 0) = h(x), as given, and vt(x, 0) =
−ux(x, 0) = f ′(x).
3. uxx = F ′′(x + ct) + G′′(x + ct), utt = c2F ′′(x + ct) + c2G(x− ct). So utt = cu

xx,
which is the wave equation.
4. (a) Using the chain rule in two dimensions:

∂u

∂x
=

∂u

∂α

∂α

∂x
+

∂u

∂β

∂β

∂x
=

∂u

∂α
+

∂u

∂β

∂2u

∂x2
=

∂

∂x

(
∂u

∂α
+

∂u

∂β

)

=
∂2u

∂α2
+

∂2u

∂β∂α
+

∂2u

∂α∂β
+

∂2u

∂β2

=
∂2u

∂α2
+ 2

∂2u

∂β∂α
+

∂2u

∂β2
.

Similarly

∂u

∂t
=

∂u

∂α

∂α

∂t
+

∂u

∂β

∂β

∂t
= c

∂u

∂α
− c

∂u

∂β

∂2u

∂t2
=

∂

∂t

(
c
∂u

∂α
− c

∂u

∂β

)

= c2 ∂2u

∂α2
− c2 ∂2u

∂β∂α
− c2 ∂2u

∂α∂β
+ c2 ∂2u

∂β2

= c2 ∂2u

∂α2
− 2c2 ∂2u

∂β∂α
+ c2 ∂2u

∂β2
.

Substituting into the wave equation, it follows that

c2 ∂2u

∂α2
+ 2

∂2u

∂β∂α
+ c2 ∂2u

∂β2
= c2 ∂2u

∂α2
− 2

∂2u

∂β∂α
+ c2 ∂2u

∂β2
⇒ ∂2u

∂α∂β
= 0.

(b) The last equation says that ∂u
∂β is constant in α. So

∂u

∂β
= g(β)

where g is an arbitrary differentiable function.
(c) Integrating the equation in (b) with respect to β, we find that u = G(β)+F (α),
where G is an antiderivative of g and F is a function of α only.
(d) Thus u(x, t) = F (x + ct) + G(x− ct), which is the solution in Exercise 3.
5. (a) We have u(x, t) = F (x + ct) + G(x − ct). To determine F and G, we use
the initial data:

u(x, 0) =
1

1 + x2
⇒ F (x) + G(x) =

1
1 + x2

; (1)
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Section 2.1 Periodic Functions 13

Solutions to Exercises 2.1
1. (a) cos x has period 2π. (b) cos πx has period T = 2π

π = 2. (c) cos 2
3x has

period T = 2π
2/3 = 3π. (d) cos x has period 2π, cos 2x has period π, 2π, 3π,.̇. A

common period of cos x and cos 2x is 2π. So cos x + cos 2x has period 2π.
2. (a) sin 7πx has period T = 2π

7π = 2/7. (b) sin nπx has period T = 2π
nπ = 2

n .
Since any integer multiple of T is also a period, we see that 2 is also a period of
sin nπx. (c) cos mx has period T = 2π

m . Since any integer multiple of T is also
a period, we see that 2π is also a period of cos mx. (d) sin x has period 2π, cos x
has period 2π; cos x + sinx so has period 2π. (e) Write sin2 2x = 1

2
− cos 4x

2
. The

function cos 4x has period T = 2π
4 = π

2 . So sin2 2x has period π
2 .

3. (a) The period is T = 1, so it suffices to describe f on an interval of length 1.
From the graph, we have

f(x) =
{

0 if − 1
2 ≤ x < 0,

1 if 0 ≤ x < 1
2 .

For all other x, we have f(x + 1) = f(x).
(b) f is continuous for all x 6= k

2 , where k is an integer. At the half-integers,
x = 2k+1

2 , using the graph, we see that limh→x+ f(h) = 0 and limh→x− f(h) =
1. At the integers, x = k, from the graph, we see that limh→x+ f(h) = 1 and
limh→x− f(h) = 0. The function is piecewise continuous.
(c) Since the function is piecewise constant, we have that f ′(x) = 0 at all x 6= k

2 ,
where k is an integer. It follows that f ′(x+) = 0 and f ′(x−) = 0 (Despite the fact
that the derivative does not exist at these points; the left and right limits exist and
are equal.)
4. The period is T = 4, so it suffices to describe f on an interval of length 4. From
the graph, we have

f(x) =
{

x + 1 if − 2 ≤ x ≤ 0,
−x + 1 if 0 < x < 2.

For all other x, we have f(x + 4) = f(x). (b) The function is continuous at all x.
(c) (c) The function is differentiable for all x 6= 2k, where k is an integer. Note that
f ′ is also 4-periodic. We have

f ′(x) =
{

1 if − 2 < x ≤ 0,
−1 if 0 < x < 2.

For all other x 6= 2k, we have f(x + 4) = f(x). If x = 0, ±4, ±8, . . . , we have
f ′(x+) = 1 and f ′(x−) = −1. If x = ±2, ±6, ±10, . . . , we have f ′(x+) = −1 and
f ′(x−) = 1.

5. This is the special case p = π of Exercise 6(b).
6. (a) A common period is 2p. (b) The orthogonality relations are

∫ p

−p

cos
mπx

p
cos

nπx

p
dx = 0 if m 6= n, m, n = 0, 1, 2, . . . ;

∫ p

−p

sin
mπx

p
sin

nπx

p
dx = 0 if m 6= n, m, n = 1, 2, . . . ;

∫ p

−p

cos
mπx

p
sin

nπx

p
dx = 0 for all m = 0, 1, 2, . . . , n = 1, 2, . . . .

These formulas are established by using various addition formulas for the cosine
and sine. For example, to prove the first one, if m 6= n, then

∫ p

−p

cos
mπx

p
cos

nπx

p
dx

=
1
2

∫ p

−p

[
cos

(m + n)πx

p
+ cos

(m − n)πx

p

]
dx

=
1
2

[
p

m + n)π
sin

(m + n)πx

p
+

p

m − n)π
sin

(m − n)πx

p

] ∣∣∣
p

−p
= 0.
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44 Chapter 2 Fourier Series

Hence

f(x) =
1
2

+
4
π

∞∑

k=0

[
−

cos[(2k + 1)πx]
π(2k + 1)2

+
sin[(2k + 1)πx]

2k + 1

]
.

22. From the graph, we have

f(x) =
{

x + 1 if − 1 < x < 0,
1 if 0 < x < 1.

So

f(−x) =
{

1 if − 1 < x < 0,
1 − x if 0 < x < 1;

hence

fe(x) =
f(x) + f(−x)

2
=
{

x
2 + 1 if − 1 < x < 0,
1 − x

2 if 0 < x < 1,

and
fo(x) =

f(x) − f(−x)
2

=
x

2
(−1 < x < 1).

As expected, f(x) = fe(x) + fo(x). Let g(x) be the function in Example 2 with
p = 1 and a = 1/2. Then fe(x) = g(x) + 1/2. So from Example 2 with p = 1 and
a = 1/2, we obtain

fe(x) =
1
2

+
1
4

+
2
π2

∞∑

k=0

1
(2k + 1)2

cos[(2k + 1)πx]

=
3
4

+
2
π2

∞∑

k=0

1
(2k + 1)2

cos[(2k + 1)πx].

From Exercise 2 with p = 1,

fo(x) =
1
2
· 2
π

∞∑

n=1

(−1)n+1

n
sin(nπx) =

1
π

∞∑

n=1

(−1)n+1

n
sin(nπx).

Hence

f(x) =
3
4

+
2
π2

∞∑

k=0

1
(2k + 1)2

cos[(2k + 1)πx] +
1
π

∞∑

n=1

(−1)n+1

n
sin(nπx)

=
3
4

+
1
π

∞∑

n=1

1 − (−1)n

πn2
cos(nπx) +

(−1)n+1

n
sin(nπx).

Let’s illustrate the convergence of the Fourier series. (This is one way to check that
our answer is correct.)

f x_ Which x 1, 0, 1 x 0, x 1, 0 x 1, 1, x 1, 0
s n_, x_ 3 4 1 Pi Sum 1 1 ^k Pi k^2 Cos k Pi x

1 ^ k 1 k Sin k Pi x , k, 1, n ;
Plot Evaluate f x , s 20, x , x, 1, 1

1
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54 Chapter 2 Fourier Series

Sine series:

bn =
2
p

∫ b

a

sin
nπx

p
dx =

2
p

p

nπ

(
cos

nπa

p
− cos

nπb

p

)
;

thus the odd extension has the sine series

fo(x) =
2
π

∞∑

n=1

1
n

(
cos

nπa

p
− cos

nπb

p

)
sin

nπx

p
.

6. The even extension is the function f1(x) = cos x for all x. Hence the Fourier
series expansion is just cos x. For the odd extension, we have, for n > 1,

bn =
2
π

∫ π

0

cos x sin nx dx

=
2
π

[
cos(1 − n)x

2(1 − n)
− cos(1 + n)x

2(1 + n)

] ∣∣∣
π

0

=
1
π

[
(−1)n−1

(1 − n)
− (−1)n+1

(1 + n)
− 1

(1 − n)
+

1
(1 + n)

]

=
2n

π

1 + (−1)n

n2 − 1
.

For n = 1, you can easily show that b1 = 0. Thus the sine Fourier series is

2
π

∞∑

n=2

n
1 + (−1)n

n2 − 1
sin nx =

4
π

∞∑

k=1

k

(2k)2 − 1
sin(2kx).

b k_ 2 k Pi 1 1 ^k k^2 1 ;
ss n_, x_ : Sum b k Sin k x , k, 2, n ;
partialsineseries Table ss n, x , n, 5, 30, 5 ;
f x_ Cos x
Plot Evaluate partialsineseries, f x , x, 0, Pi

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

7. The even extension is the function | cosx|. This is easily seen by plotting the
graph. The cosine series is (Exercise 8, Section 2.2):

| cos x| =
2
π
− 4

π

∞∑

n=1

(−1)n

(2n)2 − 1
cos(2nx).
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74 Chapter 2 Fourier Series

Hence the steady-state solution is

yp = −
1
8

cos t +
1
8

sin t +
4
65

cos 2t −
1

130
sin 2t.

(b) We have

yp = −1
8

cos t +
1
8

sin t +
4
65

cos 2t − 1
130

sin 2t,

(yp)′ =
1
8

sin t +
1
8

cos t − 8
65

sin 2t − 1
65

cos 2t,

(yp)′′ =
1
8

cos t − 1
8

sin t − 16
65

cos 2t +
2
65

sin 2t,

(yp)′′ + 4(yp)′ + 5yp =
(

1
8

+
4
8
− 5

8

)
cos t +

(
−1

8
+

4
8

+
5
8

)
sin t

+
(

2
65

−
32
65

−
5

130

)
sin 2t +

(
−

16
65

−
4
65

+
20
65

)
cos 2t

= sin t +
(

2
75

− 32
65

− 5
130

)
sin 2t − 1

2
sin 2t,

which shows that yp is a solution of the nonhomogeneous differential equation.

9. (a) Natural frequency of the spring is

ω0 =

√
k

µ
=

√
10.1 ≈ 3.164.

(b) The normal modes have the same frequency as the corresponding components
of driving force, in the following sense. Write the driving force as a Fourier series
F (t) = a0 +

∑∞
n=1 fn(t) (see (5). The normal mode, yn(t), is the steady-state

response of the system to fn(t). The normal mode yn has the same frequency as
fn. In our case, F is 2π-periodic, and the frequencies of the normal modes are
computed in Example 2. We have ω2m+1 = 2m + 1 (the n even, the normal mode
is 0). Hence the frequencies of the first six nonzero normal modes are 1, 3, 5, 7, 9,
and 11. The closest one to the natural frequency of the spring is ω3 = 3. Hence, it
is expected that y3 will dominate the steady-state motion of the spring.

13. According to the result of Exercise 11, we have to compute y3(t) and for this
purpose, we apply Theorem 1. Recall that y3 is the response to f3 = 4

3π sin 3t, the
component of the Fourier series of F (t) that corresponds to n = 3. We have a3 = 0,
b3 = 4

3π , µ = 1, c = .05, k = 10.01, A3 = 10.01− 9 = 1.01, B3 = 3(.05) = .15,

α3 =
−B3b3

A2
3 + B2

3

=
−(.15)(4)/(3π)
(1.01)2 + (.15)2

≈ −.0611 and β3 =
A3b3

A3 + B2
3

≈ .4111.

So
y3 = −.0611 cos 3t + .4111 sin 3t.

The amplitude of y3 is
√

.06112 + .41112 ≈ .4156.

17. (a) In order to eliminate the 3rd normal mode, y3, from the steady-state
solution, we should cancel out the component of F that is causing it. That is, we
must remove f3(t) = 4 sin 3t

3π . Thus subtract 4 sin 3t
3π from the input function. The

modified input function is

F (t) − 4 sin 3t

3π
.

Its Fourier series is he same as the one of F , without the 3rd component, f3(t). So
the Fourier series of the modified input function is

4
π

sin t +
4
π

∞∑

m=2

sin(2m + 1)t
2m + 1

.
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94 Chapter 3 Partial Differential Equations in Rectangular Coordinates

series that we found in Exercise 8, Section 2.4. We have, for 0 < x < π,

x sinx =
π

2
sinx − 4

π

∞∑

n=2

[1 + (−1)n]
n

(n2 − 1)2
sinnx.

Let x = πt. Then, for 0 < t < 1,

πt sinπt =
π

2
sinπt − 4

π

∞∑

n=2

[1 + (−1)n]
n

(n2 − 1)2
sinnπt.

Equivalently, for 0 < x < 1,

x sinπx =
1
2

sinπx − 4
π2

∞∑

n=2

[1 + (−1)n]
n

(n2 − 1)2
sinnπx.

So
b1 =

1
2

and bn = [1 + (−1)n]
−4n

π2(n2 − 1)2
(n ≥ 2).

Thus

u(x, t) =
sinπx cos t

2
− 4

π2

∞∑

n=2

[1 + (−1)n]
n

(n2 − 1)2
sin(nπx) cos(nt)

=
sinπx cos t

2
− 16

π2

∞∑

n=1

n

(4n2 − 1)2
sin(2nπx) cos(2nt).

(b) Here is the initial shape of the string.

Clear partsum, n, t, f
Clear f
f x_ x Sin Pi x
partsum x_, t_
Sin Pi x Cos t 2 16 Pi^2 Sum Sin 2 n Pi x Cos 2 n t n 4 n^2 1 ^2

, n, 1, 10 ;
Plot Evaluate partsum x, 0 , f x , x, 0, 1 , PlotRange All

x Sin x

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

9. The solution is

u(x, t) =
∞∑

n=1

sin(nπx) (bn cos(nπt) + b∗n sin(nπt)) ,
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294 Chapter 7 The Fourier Transform and its Applications

Solutions to Exercises 7.4

1. Repeat the solution of Example 1 making some adjustments: c = 1
2 , gt(x) =

√
2√
t
e−

x2
t ,

u(x, t) = f ∗ gt(x)

=
1√
2π

∫ ∞

−∞
f(s)

√
2√
t
e−

(x−s)2

t ds

=
20√
tπ

∫ 1

−1

e−
(x−s)2

t ds (v =
x− s√

t
, dv = − 1√

t
ds)

=
20√
π

∫ x+1√
t

x−1√
t

e−v2
ds

= 10
(

erf(
x+ 1√

t
) − erf(

x− 1√
t

)
)
.

3. Let us use an approach similar to Example 2. Fourier transform the boundary
value problem and get:

d

dt
û(w, t) = −w2û(w, t)

û(w, 0) = F(70e−
x2
2 ) = 70e−

w2
2 .

Solve the equation in û:
û(w, t) = A(w)e−w2t.

Apply the boundary condition:

û(w, t) = 70e−
w2
2 )e−w2t = 70e−w2(t+ 1

2 ).

Inverse Fourier transform:

u(x, t) = F−1
(
70e−w2(t+ 1

2 )
)

(
1
2a

= t+
1
2
)

=
70√

2t+ 1
F−1

(√
2t+ 1e−

w2
2a

)
(a =

1
2t+ 1

)

=
70√

2t+ 1
e−

x2
2(2t+1) ,

where we have used Theorem 5, Sec. 7.2.

5. Apply (4) with f(s) = s2:

u(x, t) = f ∗ gt(x)

=
1√
2t

1√
2π

∫ ∞

−∞
s2e−

(x−s)2

t ds.

You can evaluate this integral by using integration by parts twice and then appealing
to Theorem 5, Section 7.2. However, we will use a different technique based on the
operational properties of the Fourier transform that enables us to evaluate a much
more general integral. Let n be a nonnegative integer and suppose that f and
snf(s) are integrable and tend to 0 at ±∞. Then

1√
2π

∫ ∞

−∞
snf(s) ds = (i)n

[
dn

dwn
F(f)(w)

]

w=0

.

This formula is immediate if we recall Theorem 3(ii), Section 7.2, and that

φ̂(0) =
1√
2π

∫ ∞

−∞
φ(s) ds.
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49. 3 y′′ + 13 y′ + 10 y = sinx, y1 = e−x.

As in the previous exercise, let

y1 = e−x, y = ve−x, y′ = v′e−x − ve−x, y′′ = v′′e−x − 2v′e−x + ve−x.

Then

3 y′′ + 13 y′ + 10 y = sin x ⇒ 3(v′′e−x − 2v′e−x + ve−x)

+13(v′e−x − ve−x) + 10ve−x = sin x

⇒ 3v′′ + 7v′ = ex sin x

⇒ v′′ +
7
3
v′ =

1
3
ex sin x.

We now solve the first order o.d.e. in v′:

e7x/3v′′ +
7
3
e7x/3v′ = e7x/31

3
ex sin x

d

dx

[
e7x/3v′

]
=

1
3
e10x/3 sin x

e7x/3v′ =
1
3

∫
1
3
e10x/3 sin x dx

=
1
3

e10x/3

(10
3

)2 + 1
(
10
3

sinx − cos) + C

v′ =
ex

109
(10 sin x − 9

3
cos) + C.

(We used the table of integrals to evaluate the preceding integral. We will use it
again below.) Integrating once more,

v =
10
109

∫
ex sin x dx− 9

327

∫
ex cos x dx

=
10
109

ex

2
(sin x − cos x) − 9

327
ex

2
(cos x + sin x) + C

y = vy1 =
10
218

(sin x − cos x) − 9
654

(cos x + sin x) + Ce−x

= −
13
218

cos x +
7

218
sin x + Ce−x.

50. x y′′ − (1 + x)y′ + y = x3, y1 = ex. We have

y1 = ex, y = vex, y′ = v′ex + vex, y′′ = v′′ex + 2v′ex + vex.

https://answersun.com/download/ 
solutions-manual-of-partial-differential-equations-with-fourier-series-and-boundary-value-problems-by-asmar-2nd-edition/

Download full file from answersun.com




