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vi CONTENTS

Preface

This manual contains solutions to all of the exercises in Probability and Statistics, 4th edition, by Morris
DeGroot and myself. I have preserved most of the solutions to the exercises that existed in the 3rd edition.
Certainly errors have been introduced, and I will post any errors brought to my attention on my web page
http://www.stat.cmu.edu/ mark/ along with errors in the text itself. Feel free to send me comments.

For instructors who are familiar with earlier editions, I hope that you will find the 4th edition at least as
useful. Some new material has been added, and little has been removed. Assuming that you will be spending
the same amount of time using the text as before, something will have to be skipped. I have tried to arrange
the material so that instructors can choose what to cover and what not to cover based on the type of course
they want. This manual contains commentary on specific sections right before the solutions for those sections.
This commentary is intended to explain special features of those sections and help instructors decide which
parts they want to require of their students. Special attention is given to more challenging material and how
the remainder of the text does or does not depend upon it.

To teach a mathematical statistics course for students with a strong calculus background, one could safely
cover all of the material for which one could find time. The Bayesian sections include 4.8, 7.2, 7.3, 7.4, 8.6,
9.8, and 11.4. One can choose to skip some or all of this material if one desires, but that would be ignoring
one of the unique features of the text. The more challenging material in Sections 7.7–7.9, and 9.2–9.4 is really
only suitable for a mathematical statistics course. One should try to make time for some of the material in
Sections 12.1–12.3 even if it meant cutting back on some of the nonparametrics and two-way ANOVA. To teach
a more modern statistics course, one could skip Sections 7.7–7.9, 9.2–9.4, 10.8, and 11.7–11.8. This would
leave time to discuss robust estimation (Section 10.7) and simulation (Chapter 12). Section 3.10 on Markov
chains is not actually necessary even if one wishes to introduce Markov chain Monte Carlo (Section 12.5),
although it is helpful for understanding what this topic is about.

Using Statistical Software

The text was written without reference to any particular statistical or mathematical software. However,
there are several places throughout the text where references are made to what general statistical software
might be able to do. This is done for at least two reasons. One is that different instructors who wish to use
statistical software while teaching will generally choose different programs. I didn’t want the text to be tied
to a particular program to the exclusion of others. A second reason is that there are still many instructors
of mathematical probability and statistics courses who prefer not to use any software at all.

Given how pervasive computing is becoming in the use of statistics, the second reason above is becoming
less compelling. Given the free and multiplatform availability and the versatility of the environment R, even
the first reason is becoming less compelling. Throughout this manual, I have inserted pointers to which R

functions will perform many of the calculations that would formerly have been done by hand when using this
text. The software can be downloaded for Unix, Windows, or Mac OS from
http://www.r-project.org/

That site also has manuals for installation and use. Help is also available directly from within the R envi-
ronment.

Many tutorials for getting started with R are available online. At the official R site there is the detailed
manual: http://cran.r-project.org/doc/manuals/R-intro.html
that starts simple and has a good table of contents and lots of examples. However, reading it from start to
finish is not an efficient way to get started. The sample sessions should be most helpful.

One major issue with using an environment like R is that it is essentially programming. That is, students
who have never programmed seriously before are going to have a steep learning curve. Without going into
the philosophy of whether students should learn statistics without programming, the field is moving in the
direction of requiring programming skills. People who want only to understand what a statistical analysis
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is about can still learn that without being able to program. But anyone who actually wants to do statistics
as part of their job will be seriously handicapped without programming ability. At the end of this manual
is a series of heavily commented R programms that illustrate many of the features of R in the context of a
specific example from the text.

Mark J. Schervish
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Chapter 1

Introduction to Probability

1.2 Interpretations of Probability

Commentary

It is interesting to have the students determine some of their own subjective probabilities. For example, let
X denote the temperature at noon tomorrow outside the building in which the class is being held. Have each
student determine a number x1 such that the student considers the following two possible outcomes to be
equally likely: X ≤ x1 andX > x1. Also, have each student determine numbers x2 and x3 (with x2 < x3) such
that the student considers the following three possible outcomes to be equally likely: X ≤ x2, x2 < X < x3,
and X ≥ x3. Determinations of more than three outcomes that are considered to be equally likely can also
be made. The different values of x1 determined by different members of the class should be discussed, and
also the possibility of getting the class to agree on a common value of x1.

Similar determinations of equally likely outcomes can be made by the students in the class for quantities
such as the following ones which were found in the 1973 World Almanac and Book of Facts: the number
of freight cars that were in use by American railways in 1960 (1,690,396), the number of banks in the
United States which closed temporarily or permanently in 1931 on account of financial difficulties (2,294),
and the total number of telephones which were in service in South America in 1971 (6,137,000).

1.4 Set Theory

Solutions to Exercises

1. Assume that x ∈ Bc. We need to show that x ∈ Ac. We shall show this indirectly. Assume, to the
contrary, that x ∈ A. Then x ∈ B because A ⊂ B. This contradicts x ∈ Bc. Hence x ∈ A is false and
x ∈ Ac.

2. First, show that A ∩ (B ∪ C) ⊂ (A ∩B) ∪ (A ∩ C). Let x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C.
That is, x ∈ A and either x ∈ B or x ∈ C (or both). So either (x ∈ A and x ∈ B) or (x ∈ A
and x ∈ C) or both. That is, either x ∈ A ∩ B or x ∈ A ∩ C. This is what it means to say that
x ∈ (A∩B)∪ (A∩C). Thus A∩ (B∪C) ⊂ (A∩B)∪ (A∩C). Basically, running these steps backwards
shows that (A ∩B) ∪ (A ∩C) ⊂ A ∩ (B ∪C).

3. To prove the first result, let x ∈ (A ∪ B)c. This means that x is not in A ∪ B. In other words, x is
neither in A nor in B. Hence x ∈ Ac and x ∈ Bc. So x ∈ Ac∩Bc. This proves that (A∪B)c ⊂ Ac∩Bc.
Next, suppose that x ∈ Ac ∩Bc. Then x ∈ Ac and x ∈ Bc. So x is neither in A nor in B, so it can’t be
in A ∪ B. Hence x ∈ (A ∪ B)c. This shows that Ac ∩ Bc ⊂ (A ∪ B)c. The second result follows from
the first by applying the first result to Ac and Bc and then taking complements of both sides.
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Section 3.10. Markov Chains 93

3.10 Markov Chains

Commentary

Instructors can discuss this section at any time that they find convenient or they can omit it entirely.
Instructors who wish to cover Sec. 12.5 (Markov chain Monte Carlo) and who wish to give some theoretical
justification for the methodology will want to discuss some of this material before covering Sec. 12.5. On
the other hand, one could cover Sec. 12.5 and skip the justification for the methodology without introducing
Markov chains at all.

Students may notice the following property, which is exhibited in some of the exercises at the end of this
section: Suppose that the Markov chain is in a given state si at time n. Then the probability of being in a
particular state sj a few periods later, say at time n+3 or n+4, is approximately the same for each possible
given state si at time n. For example, in Exercise 2, the probability that it will be sunny on Saturday is
approximately the same regardless of whether it is sunny or cloudy on the preceding Wednesday, three days
earlier. In Exercise 5, for given probabilities on Wednesday, the probability that it will be cloudy on Friday is
approximately the same as the probability that it will be cloudy on Saturday. In Exercise 7, the probability
that the student will be on time on the fourth day of class is approximately the same regardless of whether
he was late or on time on the first day of class. In Exercise 10, the probabilities for n = 3 and n = 4, are
generally similar. In Exercise 11, the answers in part (a) and part (b) are almost identical.

This property is a reflection of the fact that for many Markov chains, the nth power of the transition
matrix P n will converge, as n → ∞, to a matrix for which all the elements in any given column are equal.
For example, in Exercise 2, the matrix P n converges to the following matrix:⎡⎢⎢⎣

2

3

1

3
2

3

1

3

⎤⎥⎥⎦ .
This type of convergence is an example of Theorem 3.10.4. This theorem, and analogs for more com-

plicated Markov chains, provide the justification of the Markov chain Monte Carlo method introduced in
Sec. 12.5.

Solutions to Exercises

1. The transition matrix for this Markov chain is

P =

⎡⎢⎢⎣
1

3

2

3
2

3

1

3

⎤⎥⎥⎦ .
(a) If we multiply the initial probability vector by this matrix we get

vP =

(
1

2

1

3
+

1

2

2

3
,
1

2

2

3
+

1

2

1

3

)
=

(
1

2
,
1

2

)
.

(b) The two-step transition matrix is P 2, namely⎡⎢⎢⎣
1

3

1

3
+

2

3

2

3

1

3

2

3
+

2

3

1

3
2

3

1

3
+

1

3

2

3

2

3

2

3
+

1

3

1

3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
5

9

4

9
4

9

5

9

⎤⎥⎥⎦ .
2. (a) 0.4, the lower right corner of the matrix.
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Section 6.2. The Law of Large Numbers 193

19. (a) First, insert s from (6.2.15) into the expression in (6.2.14). We get

n

⎡⎣log(p) + (1− p

p
+ u

)
log

{
(1 + u)p+ 1− p

up+ 1− p
(1− p)

}
− log

⎧⎨⎩1− 1− p
(1+u)p+1−p

up+1−p (1− p)

⎫⎬⎭
⎤⎦ .

The last term can be rewritten as

− log

{
1− up+ 1− p

(1 + u)p+ 1− p

}
= − log(p) + log {(1 + u)p + 1− p} .

The result is then

n

[(
1− p

p
+ u

)
log

{
(1 + u)p+ 1− p

up+ 1− p
(1− p)

}
+ log {(1 + u)p + 1− p}

]
.

This is easily recognized as n times the logarithm of (6.2.16).

(b) For all u, q is given by (6.2.16). For u = 0, q = (1−p)(1−p)/p. Since 0 < 1−p < 1 and (1−p)/p > 0,
we have 0 < q < 1 when u = 0. For general u, let x = p(1 + u) + 1− p and rewrite

log(q) = log(p+ x) +
p+ x

p
log

(1− p)(p + x)

x
.

Since x is a linear increasing function of u, if we show that log(q) is decreasing in x, then q is
decreasing in u. The derivative of log(q) with respect to x is

− p

x(p+ x)
+

1

p
log

(1− p)(p+ x)

x
.

The first term is negative, and the second term is negative at u = 0 (x = 1). To be sure that the
sum is always negative, examine the second term more closely. The derivative of the second term
is

1

p

(
1

p+ x
− 1

x

)
=

−1

x(p + x)
< 0.

Hence, the derivative is always negative, and q is less than 1 for all u.

20. We already have the m.g.f. of Y in (6.2.9). We can multiply it by e−sn/10 and minimize over s > 0.
Before minimizing, take the logarithm:

log[ψ(s)e−sn/10] = n

[
log(1/2) + log[exp(s) + 1]− 3s

5

]
. (S.6.7)

The derivative of this logarithm is

n

[
exp(s)

exp(s) + 1
− 3

5

]
.

The derivative is 0 at s = log(3/2), and the second derivative is positive there, so s = log(3/2) provides
the minimum. The minimum value of (S.6.7) is −0.02014, and the Chernoff bound is exp(−0.02014n) =
(0.98)n for Pr(Y > n/10). Similarly, for Pr(−Y > n/10), we need to minimize

log[ψ(−s)e−sn/10] = n

[
log(1/2) + log[exp(−s) + 1] +

2s

5

]
. (S.6.8)

The derivative is

n

[ − exp(−s)

exp(−s) + 1
+

2

5

]
,
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Section 9.5. The t Test 293

9.5 The t Test

Commentary

This section provides a natural continuation to Sec. 9.1 in a modern statistics course. We introduce the t
test and its power function, defined in terms of the noncentral t distribution. The theoretical derivation of
the t test as a likelihood ratio test is isolated at the end of the section and could easily be skipped without
interrupting the flow of material. Indeed, that derivation should only be of interest in a fairly mathematical
statistics course.

As with confidence intervals, computer software can replace tables for obtaining quantiles of the t distri-
butions that are used in tests. The R function qt can compute these. For computing p-values, one can use pt.
The precise use of pt depends on whether the alternatoive hypothesis is one-sided or two-sided. For testing
H0 : μ ≤ μ0 versus H1 : μ > μ0 using the statistic U in Eq. (9.5.2), the p-value would be 1-pt(u,n-1),
where u is the observed value of U . Fot the opposite one-sided hypotheses, the p-value would be pt(u,n-1).
For testing H0 : μ = μ0 versus H1 : μ �= μ0, the p-value is 2*(1-pt(abs(u),n-1)). The power function of
a t test can be computed using the optional third parameter with pt, which is the noncentrality parameter
(whose default value is 0). Similar considerations apply to the comparison of two means in Sec. 9.6.

Solutions to Exercises

1. We computed the summary statistics xn = 1.379 and σ′ = 0.3277 in Example 8.5.4.

(a) The test statistic is U from (9.5.2)

U = 101/2
1.379 − 1.2

0.3277
= 1.727.

We reject H0 at level α0 = 0.05 if U ≥ 1.833, the 0.95 quantile of the t distribution with 9 degrees
of freedom. Since 1.727 �≥ 1.833, we do not reject H0 at level 0.05.

(b) We need to compute the probability that a t random variable with 9 degrees of freedom exceeds
1.727. This probability can be computed by most statistical software, and it equals 0.0591. With-
out a computer, one could interpolate in the table of the t distribution in the back of the book.
That would yield 0.0618.

2. When μ0 = 20, the statistic U given by Eq. (9.5.2) has a t distribution with 8 degrees of freedom. The
value of U in this exercise is 2.

(a) We would reject H0 if U ≥ 1.860. Therefore, we reject H0.

(b) We would reject H0 if U ≤ −2.306 or U ≥ 2.306. Therefore, we don’t reject H0.

(c) We should include in the confidence interval, all values of μ0 for which the value of U given by Eq.
(9.5.2) will lie between −2.306 and 2.306. These values form the interval 19.694 < μ0 < 24.306.

3. It must be assumed that the miles per gallon obtained from the different tankfuls are independent and
identically distributed, and that each has a normal distribution. When μ0 = 20, the statistic U given
by Eq. (9.5.2) has the t distribution with 8 degrees of freedom. Here, we are testing the following
hypotheses:

H0 :μ ≥ 20,
H1 :μ < 20.

We would reject H0 if U ≤ −1.860. From the given value, it is found that Xn = 19 and S2
n = 22.

Hence, U = −1.809 and we do not reject H0.
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15. Let Y1 = W1, Y2 = W2 − 5, and Y3 =
1
2W3. Then the random vector

Y =

⎡⎣Y1

Y2

Y3

⎤⎦
satisfies the conditions of the general linear model as described in Sec. 11.5 with

Z =

⎡⎣ 1 1
1 1
1 −1

⎤⎦ , β =

[
θ1
θ2

]
.

Thus,

Z ′Z =

[
3 1
1 3

]
, (Z ′Z )−1 =

[
3/8 −1/8
−1/8 3/8

]
,

and

β̂ =

[
θ̂1
θ̂2

]
= (Z ′Z )−1Z ′Y =

⎡⎢⎣
1

4
Y1 +

1

4
Y2 +

1

2
Y3

1

4
Y1 +

1

4
Y2 − 1

2
Y3

⎤⎥⎦ .
Also,

σ̂2 =
1

3
(Y −Z β̂ )′(Y −Z β̂ )

=
1

3

[
(Y1 − θ̂1 − θ̂2)

2 + (Y2 − θ̂1 − θ̂2)
2 + (Y3 − θ̂1 + θ̂2)

2
]
.

The following distributional properties of these M.L.E.’s are known from Sec. 11.5: (θ̂1, θ̂2) and σ̂2

are independent; (θ̂1, θ̂2) has a bivariate normal distribution with mean vector (θ1, θ2) and covariance
matrix

σ2(Z ′Z )−1 =

[
3/8 −1/8
−1/8 3/8

]
σ2;

3σ̂2/σ2 has a χ2 distribution with one degree of freedom.

16. Direct application of the theory of least squares would require choosing α and β to minimize

Q1 =
n∑

i=1

(yi − αxβi )
2.

This minimization must be carried out numerically since the solution cannot be found in closed form.
However, if we express the required curve in the form log y = log α+β log x, and then apply the method
of least squares, we must choose β0 and β1 to minimize

Q2 =
n∑

i=1

(log yi − β0 − β1 log xi)
2,
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