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Chapter 0

0.1 Homogeneous Linear Equations

1. You should be able to write out the solution without going through any algebra

d(x) = ¢) cos(Ax) + casin(Az}).

3.(a) Treat this as a constant-coeflicients equation. The characteristic equation is m? = (,
with double root m = 0. Therefore the solution of the differential equation is u(t) =
c1 -+ eot.

(b) Because there is no u or du/dt term, you can integrate directly, twice: du/dt = cq,
u = col + 1.

5. Do the indicated differentiation.

EW  1dW )2

—_— e = —W = (.

dr? + rdr 72
This is a Cauchy-Euler equation. Guess w = 1™ so the characteristic equation is
m(m— 1) +m — A2 = 0 or m? — A? = 0, with solutions m = A, m = —A. The general
solution is

w(r) =ert +er

7. This differential equation is best solved by integrating (since there is no term in v).

dv
(h + k&?)a‘; =

dv_ o
dr  h+kx

v= % In(h + kz) + c2

9. Solve by integrating, since there is no term in w:

z3 du c du ez
— =y o =0
dz ' dx '
_ -2
U= —-—=I “+ Co.

11. Solve by integrating, since there is no term in .

rd—u—C' du_a = ¢ In(r) + ¢
- a7 *

13. The characteristic polynomial is (m* — X4} = (m? + A2){(m? — A?) with roots m = £,
+i)A. The general solution of the differential equation is

u(z) = c1e™ + cpe™™ + c3 cos(Az) + cssin{Azx).
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1
ag = §
by geometry; ¢, = 0 because the extended function is % plus an odd square wave of

height %; then b, = (1 — cos(nm)) /nn.

9. Note that the given function is the sum of the odd and even extensions of f(z) = z,
0 < z < a. Use this fact to find ap = a/2, an = 2a(cos(nm) — 1)/(nm)% b, =
—2a cos(nm)/(nw). The periodic function has discontinuities at © = +a, £+3a, etc. The
table shows the sum of the series, determined by using the convergence theorem.

z |—a|—a/2 O‘a‘Qa

sumi @ 0 Ola'O

11. ap = % by geometry.

2 7{/2 w 1 2 N : Tl'/2 . T . nw
ap = — / cos(nz)dx + f = cos(nz)dz| = = S--m———m(m) _____Hsm(na:) = s____m( 2 )
7 |Jo /2 2 T no | 2n |, /2 nw

This function has discontinuities at z = &/2, £37/2, etc. The convergence theorem
gives the values in the table

z |0(’ﬂ'/2[ " ‘37{/2'271‘
sum|1‘3/4|1/2{ 3/4 ‘ 1

13. The odd periodic extension, period 2, accidentally has period 1 because of odd symmetry
about the point z = 1/2. Discontinuities occur at z = 0, £1, 42, etc., and the sum of

the series is 0 at those points.

15. The function is odd, continuous, and sectionally smooth, so f(z) = 3_ basin(nz) and

9 /2
by = — f sin(2z) sin{nz)dz
mJo

2 | sin({n —2)z) sin((n +2)z)

K 2(n —2) 2n+2) |,

Note that sin({n £ 2)w/2) = sin(nw/2 + ) = —sin(nm/2). The integration formula
would require division by 0 if n = 2, so by must be found separately.

/2 sin(nm/2) [ 1 1
= — - |:n——2—n+2:|’(n?é2).

17. Use cos(nz) = Re(e®), then find the real part of 3} €™*:

giN+)z _ iz

N
SEE:Einm=
- ez — 1

This can be reduced by standard algebra, but it is quicker to multiply numerator and
denominator by e **/2; so the sum becomes

ciN+1/2)e _ gic/2
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_ 1 sin((n — 3)m)]
A cosh(pna) = / Sy cos(u.y)dy = 25b [(n — %)%2 + = Cp.

Finally,

Z ¢, o8B lin) cosh(y cos (1)
lcosh Hayl):

7. The problem has homogeneous boundary conditions at ¢ =0 and z = a. The eigenvalue

problem is
X"+ XX =0, 0<z<a

X'(0)=0, X(a)=0

with Xo(z) = cos(Aaz), An = (n — L)7/a. Also ¥/ — XY, = 0 and Y;(0) = 0, so
Y, (y) = cosh(A,y}. Then

vz, y) Z a, cosh{ Ay} cos(Anx).

n=]

The remaining condition, at y = b, is w(z,b) = Sb(z — a)/a, or

Z an cosh(\,b) cos(A,z) = Sb(z — a)/a

n=1

25b
T b

an cosh(A,b) = / b (z — a)cos(Aaz)dz =
9. This is a routine problem from Section 4.2. The solution has the form

sin{Anx).

= G sinh(Any) + ansinh(Aa(b — y)
(z.y) = Z sinh(A,.0)

n=1

The coefficients are

a i — 1~
Qp = Cp = _2_/ _M Sin(Anm)d[E = —2.[{@2_“_250“?'%2"71:2'
a Jo 9 nem

11. Calculate directly
V2p = (12A2? + 6Bay + 2Cy°) + (2C2” + 6Day + 12Ey?)

and equate to —H = —K(z? +y?). Then 124 4+ 2C = ~I(, 12F + 2C = — K. These
are two equations in three unknowns A4, C, E. Many solutions are possible, especially

C=-K/2,A=E=0: p=—-Ka*y?/2
and

C=0A=FE=-K/12: p=-K(z'+y")/12
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Chapter 6

Miscellaneous Exercises

1. Transform the problem
U —+* (U«-z) =sU - Ty

s
U')=0, U(l)=0
T

U= ?9—3-51—!? 4 ¢1 cosh (\/72 + scc) 4 ¢ sinh (\/72 + sm)
U'(0) = 0 makes c; = 0; U'(1) = 0 makes ¢; = 0. Thus U is just the first term. Apply
partial fractions

Tg + ’}‘QT/S To ")’2T T{) 1 1

2 2 s = Az +T =~
Y +s Yi+s  s(vi+s) ks

s 7 +s
u(t) = (Ty—T)e "t + T.

The partial differential equation really does not involve x, since there is nothing in
the partial differential equation, the initial condition or the boundary conditions that
forces u to be different {or different values of x.

3. Transform the problem

U= sU, UN0) =0, U(l) = —.

52
Solution
_ cosh(y/s7)
~ s2cosh(y/s)’
Zeros of the denominator: s =0and s = —(n— )% =1r,, n=1,2,---. A replace
the cosh by the first terms of their Taylor series near 0:
2 5
Uie.s) = L+ b (1+§§‘+“') (1-5+-) _ 1+ -1+
o sP(L+2+4+--) 52 52
1 2t
82 25

The inverse transform of these terms is ¢ + “’—22:1 (known as a heat polynomial) which
satisfies the heat equation and the boundary conditions.

A Let
q(s) = M, p(s) = cosh(vs), p = L sinh(+/s)

s? 25
_ COS((TI. — %)'j‘rgj) 27,(7’[, — -%)Tr _ QCOS((TI. ha %)71'13)
"T T Dt dsn((n- D (- D sin((n— D)m)’
The solution is )
22— 1 o= 2008(paT) _ 2,
,t — t e Lkl S 2
u(z,t) =1+ 5+ ; 7 sin(pn) e

where p, = (n — ;).
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