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0-2 Solutions Manual for Statistical Inference

“When I hear you give your reasons,” I remarked, “the thing always appears to me to be so
ridiculously simple that I could easily do it myself, though at each successive instance of your
reasoning I am baffled until you explain your process.”

Dr. Watson to Sherlock Holmes
A Scandal in Bohemia

0.1 Description

This solutions manual contains solutions for all odd numbered problems plus a large number of
solutions for even numbered problems. Of the 624 exercises in Statistical Inference, Second Edition,
this manual gives solutions for 484 (78%) of them. There is an obtuse pattern as to which solutions
were included in this manual. We assembled all of the solutions that we had from the first edition,
and filled in so that all odd-numbered problems were done. In the passage from the first to the
second edition, problems were shuffled with no attention paid to numbering (hence no attention
paid to minimize the new effort), but rather we tried to put the problems in logical order.

A major change from the first edition is the use of the computer, both symbolically through
Mathematicatm and numerically using R. Some solutions are given as code in either of these lan-
guages. Mathematicatm can be purchased from Wolfram Research, and R is a free download from
http://www.r-project.org/.

Here is a detailed listing of the solutions included.

Chapter Number of Exercises Number of Solutions Missing
1 55 51 26, 30, 36, 42
2 40 37 34, 38, 40
3 50 42 4, 6, 10, 20, 30, 32, 34, 36
4 65 52 8, 14, 22, 28, 36, 40

48, 50, 52, 56, 58, 60, 62
5 69 46 2, 4, 12, 14, 26, 28

all even problems from 36− 68
6 43 35 8, 16, 26, 28, 34, 36, 38, 42
7 66 52 4, 14, 16, 28, 30, 32, 34,

36, 42, 54, 58, 60, 62, 64
8 58 51 36, 40, 46, 48, 52, 56, 58
9 58 41 2, 8, 10, 20, 22, 24, 26, 28, 30

32, 38, 40, 42, 44, 50, 54, 56
10 48 26 all even problems except 4 and 32
11 41 35 4, 20, 22, 24, 26, 40
12 31 16 all even problems
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Many people contributed to the assembly of this solutions manual. We again thank all of those
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comments of others in the assembly of this manual, we are responsible for its ultimate correctness.
To this end, we have tried our best but, as a wise man once said, “You pays your money and you
takes your chances.”
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Full file at   
https://answersun.com/download/solutions-manual-statistical-inference-2nd-edition-by-casella-berger/

Download full file from answersun.com



Chapter 1

Probability Theory

“If any little problem comes your way, I shall be happy, if I can, to give you a hint or two as
to its solution.”

Sherlock Holmes
The Adventure of the Three Students

1.1 a. Each sample point describes the result of the toss (H or T) for each of the four tosses. So,
for example THTT denotes T on 1st, H on 2nd, T on 3rd and T on 4th. There are 24 = 16
such sample points.

b. The number of damaged leaves is a nonnegative integer. So we might use S = {0, 1, 2, . . .}.
c. We might observe fractions of an hour. So we might use S = {t : t ≥ 0}, that is, the half

infinite interval [0,∞).

d. Suppose we weigh the rats in ounces. The weight must be greater than zero so we might use
S = (0,∞). If we know no 10-day-old rat weighs more than 100 oz., we could use S = (0, 100].

e. If n is the number of items in the shipment, then S = {0/n, 1/n, . . . , 1}.

1.2 For each of these equalities, you must show containment in both directions.

a. x ∈ A\B ⇔ x ∈ A and x /∈ B ⇔ x ∈ A and x /∈ A ∩ B ⇔ x ∈ A\(A ∩ B). Also, x ∈ A and
x /∈ B ⇔ x ∈ A and x ∈ Bc ⇔ x ∈ A ∩Bc.

b. Suppose x ∈ B. Then either x ∈ A or x ∈ Ac. If x ∈ A, then x ∈ B ∩ A, and, hence
x ∈ (B ∩A)∪ (B ∩Ac). Thus B ⊂ (B ∩A)∪ (B ∩Ac). Now suppose x ∈ (B ∩A)∪ (B ∩Ac).
Then either x ∈ (B ∩ A) or x ∈ (B ∩ Ac). If x ∈ (B ∩ A), then x ∈ B. If x ∈ (B ∩ Ac),
then x ∈ B. Thus (B ∩A) ∪ (B ∩Ac) ⊂ B. Since the containment goes both ways, we have
B = (B ∩ A) ∪ (B ∩ Ac). (Note, a more straightforward argument for this part simply uses
the Distributive Law to state that (B ∩A) ∪ (B ∩Ac) = B ∩ (A ∪Ac) = B ∩ S = B.)

c. Similar to part a).

d. From part b).
A ∪B = A ∪ [(B ∩A) ∪ (B ∩Ac)] = A ∪ (B ∩ A) ∪ A ∪ (B ∩ Ac) = A ∪ [A ∪ (B ∩Ac)] =
A ∪ (B ∩Ac).

1.3 a. x ∈ A ∪B ⇔ x ∈ A or x ∈ B ⇔ x ∈ B ∪A

x ∈ A ∩B ⇔ x ∈ A and x ∈ B ⇔ x ∈ B ∩A.

b. x ∈ A ∪ (B ∪ C) ⇔ x ∈ A or x ∈ B ∪ C ⇔ x ∈ A ∪B or x ∈ C ⇔ x ∈ (A ∪B) ∪ C.
(It can similarly be shown that A ∪ (B ∪ C) = (A ∪ C) ∪B.)
x ∈ A ∩ (B ∩ C) ⇔ x ∈ A and x ∈ B and x ∈ C ⇔ x ∈ (A ∩B) ∩ C.

c. x ∈ (A ∪B)c ⇔ x /∈ A or x /∈ B ⇔ x ∈ Ac and x ∈ Bc ⇔ x ∈ Ac ∩Bc

x ∈ (A ∩B)c ⇔ x /∈ A ∩B ⇔ x /∈ A and x /∈ B ⇔ x ∈ Ac or x ∈ Bc ⇔ x ∈ Ac ∪Bc.

1.4 a. “A or B or both” is A∪B. From Theorem 1.2.9b we have P (A∪B) = P (A)+P (B)−P (A∩B).
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4-6 Solutions Manual for Statistical Inference

Then,

fU (u) =
Γ(α+β+γ)

Γ(α)Γ(β)Γ(γ)
uα−1

∫ 1

u

vβ−1(1− v)γ−1(
v−u

v
)β−1dv

=
Γ(α+β+γ)

Γ(α)Γ(β)Γ(γ)
uα−1(1− u)β+γ−1

∫ 1

0

yβ−1(1− y)γ−1dy

(
y =

v − u

1−u
, dy =

dv

1−u

)
=

Γ(α+β+γ)
Γ(α)Γ(β)Γ(γ)

uα−1(1− u)β+γ−1 Γ(β)Γ(γ)
Γ(β+γ)

=
Γ(α+β+γ)
Γ(α)Γ(β+γ)

uα−1(1− u)β+γ−1, 0 < u < 1.

Thus, U ∼ gamma(α, β + γ).
b. Let x =

√
uv, y =

√
u
v then

J =
∣∣∣∣ ∂x

∂u
∂x
∂v

∂y
∂u

∂x
∂v

∣∣∣∣ = ∣∣∣∣ 1
2v1/2u−1/2 1

2u1/2v−1/2

1
2v−1/2u−1/2 − 1

2u1/2v−3/2

∣∣∣∣ = 1
2v

.

fU,V (u, v) =
Γ(α + β + γ)
Γ(α)Γ(β)Γ(γ)

(
√

uv
α−1(1−

√
uv)β−1

(√
u

v

)α+β−1(
1−

√
u

v

)γ−1
1
2v

.

The set {0 < x < 1, 0 < y < 1} is mapped onto the set {0 < u < v < 1
u , 0 < u < 1}. Then,

fU (u)

=
∫ 1/u

u

fU,V (u, v)dv

=
Γ(α + β + γ)
Γ(α)Γ(β)Γ(γ)

uα−1(1−u)β+γ−1︸ ︷︷ ︸
∫ 1/u

u

(
1−

√
uv

1− u

)β−1
(

1−
√

u/v

1− u

)γ−1
(
√

u/v)β

2v(1− u)
dv.

Call it A

To simplify, let z =
√

u/v−u

1−u . Then v = u ⇒ z = 1, v = 1/u ⇒ z = 0 and dz = −
√

u/v

2(1−u)v dv.
Thus,

fU (u) = A

∫
zβ−1(1− z)γ−1dz ( kernel of beta(β, γ))

=
Γ(α+β+γ)

Γ(α)Γ(β)Γ(γ)
uα−1(1− u)β+γ−1 Γ(β)Γ(γ)

Γ(β+γ)

=
Γ(α+β+γ)
Γ(α)Γ(β+γ)

uα−1(1− u)β+γ−1, 0 < u < 1.

That is, U ∼ beta(α, β + γ), as in a).
4.24 Let z1 = x + y, z2 = x

x+y , then x = z1z2, y = z1(1− z2) and

|J | =

∣∣∣∣∣ ∂x
∂z1

∂x
∂z2

∂y
∂z1

∂y
∂z2

∣∣∣∣∣ =
∣∣∣∣ z2 z1

1−z2 −z1

∣∣∣∣ = z1.

The set {x > 0, y > 0} is mapped onto the set {z1 > 0, 0 < z2 < 1}.

fZ1,Z2(z1, z2) =
1

Γ(r)
(z1z2)r−1e−z1z2 · 1

Γ(s)
(z1 − z1z2)s−1e−z1+z1z2z1

=
1

Γ(r+s)
zr+s−1
1 e−z1 · Γ(r+s)

Γ(r)Γ(s)
zr−1
2 (1− z2)s−1, 0 < z1, 0 < z2 < 1.
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Second Edition 7-3

The likelihood function is

L(θ|x) =
n∏

i=1

1
θ
I[0,θ](xi) =

1
θn

I[0,θ](x(n))I[0,∞)(x(1)),

where x(1) and x(n) are the smallest and largest order statistics. For θ ≥ x(n), L = 1/θn, a
decreasing function. So for θ ≥ x(n), L is maximized at θ̂ = x(n). L = 0 for θ < x(n). So the
overall maximum, the MLE, is θ̂ = X(n). The pdf of θ̂ = X(n) is nxn−1/θn, 0 ≤ x ≤ θ. This
can be used to calculate

E θ̂ =
n

n + 1
θ, E θ̂2 =

n

n + 2
θ2 and Var θ̂ =

nθ2

(n + 2)(n + 1)2
.

θ̃ is an unbiased estimator of θ; θ̂ is a biased estimator. If n is large, the bias is not large
because n/(n + 1) is close to one. But if n is small, the bias is quite large. On the other hand,
Var θ̂ < Var θ̃ for all θ. So, if n is large, θ̂ is probably preferable to θ̃.

7.10 a. f(x|θ) =
∏

i
α

βα xα−1
i I[0,β](xi) =

(
α

βα

)n

(
∏

i xi)
α−1

I(−∞,β](x(n))I[0,∞)(x(1)) = L(α, β|x). By
the Factorization Theorem, (

∏
i Xi, X(n)) are sufficient.

b. For any fixed α, L(α, β|x) = 0 if β < x(n), and L(α, β|x) a decreasing function of β if
β ≥ x(n). Thus, X(n) is the MLE of β. For the MLE of α calculate

∂

∂α
logL =

∂

∂α

[
nlogα−nαlogβ+(α−1)log

∏
i

xi

]
=

n

α
− n log β + log

∏
i

xi.

Set the derivative equal to zero and use β̂ = X(n) to obtain

α̂ =
n

nlogX(n)− log
∏

i Xi
=

[
1
n

∑
i

(logX(n)− logXi)

]−1

.

The second derivative is −n/α2 < 0, so this is the MLE.
c. X(n) = 25.0, log

∏
i Xi =

∑
i log Xi = 43.95 ⇒ β̂ = 25.0, α̂ = 12.59.

7.11 a.

f(x|θ) =
∏

i

θxθ−1
i = θn

(∏
i

xi

)θ−1

= L(θ|x)

d

dθ
log L =

d

dθ

[
nlogθ+(θ−1)log

∏
i

xi

]
=

n

θ
+
∑

i

log xi.

Set the derivative equal to zero and solve for θ to obtain θ̂ = (− 1
n

∑
i log xi)−1. The second

derivative is −n/θ2 < 0, so this is the MLE. To calculate the variance of θ̂, note that
Yi = − log Xi ∼ exponential(1/θ), so −

∑
i log Xi ∼ gamma(n, 1/θ). Thus θ̂ = n/T , where

T ∼ gamma(n, 1/θ). We can either calculate the first and second moments directly, or use
the fact that θ̂ is inverted gamma (page 51). We have

E
1
T

=
θn

Γ(n)

∫ ∞

0

1
t
tn−1e−θt dt =

θn

Γ(n)
Γ(n− 1)

θn−1
=

θ

n− 1
.

E
1

T 2
=

θn

Γ(n)

∫ ∞

0

1
t2

tn−1e−θt dt =
θn

Γ(n)
Γ(n− 2)

θn−2
=

θ2

(n− 1)(n− 2)
,
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Second Edition 7-23

Therefore, the UMVUE is

E

(
T

∣∣∣∣∣
n+1∑
i=1

Xi = y

)
=


0 if y = 0
(n

y)py(1−p)n−y(1−p)

(n+1
y )py(1−p)n−y+1 = (n

y)
(n+1

y ) = 1
(n+1)(n+1−y) if y = 1 or 2

((n
y)+( n

y−1))py(1−p)n−y+1

(n+1
y )py(1−p)n−y+1 = (n

y)+( n
y−1)

(n+1
y ) = 1 if y > 2.

7.59 We know T = (n− 1)S2/σ2 ∼ χ2
n−1. Then

ET p/2 =
1

Γ
(

n−1
2

)
2

n−1
2

∫ ∞

0

t
p+n−1

2 −1e−
t
2 dt =

2
p
2 Γ
(

p+n−1
2

)
Γ
(

n−1
2

) = Cp,n.

Thus

E

(
(n− 1)S2

σ2

)p/2

= Cp,n,

so (n − 1)p/2Sp
/

Cp,n is an unbiased estimator of σp. From Theorem 6.2.25, (X̄, S2) is a

complete, sufficient statistic. The unbiased estimator (n−1)p/2Sp
/

Cp,n is a function of (X̄, S2).
Hence, it is the best unbiased estimator.

7.61 The pdf for Y ∼ χ2
ν is

f(y) =
1

Γ(ν/2)2ν/2
yν/2−1e−y/2.

Thus the pdf for S2 = σ2Y/ν is

g(s2) =
ν

σ2

1
Γ(ν/2)2ν/2

(
s2ν

σ2

)ν/2−1

e−s2ν/(2σ2).

Thus, the log-likelihood has the form (gathering together constants that do not depend on s2

or σ2)

log L(σ2|s2) = log
(

1
σ2

)
+ K log

(
s2

σ2

)
−K ′ s

2

σ2
+ K ′′,

where K > 0 and K ′ > 0.
The loss function in Example 7.3.27 is

L(σ2, a) =
a

σ2
− log

( a

σ2

)
− 1,

so the loss of an estimator is the negative of its likelihood.
7.63 Let a = τ2/(τ2 + 1), so the Bayes estimator is δπ(x) = ax. Then R(µ, δπ) = (a− 1)2µ2 + a2.

As τ2 increases, R(µ, δπ) becomes flatter.
7.65 a. Figure omitted.

b. The posterior expected loss is E (L(θ, a)|x) = ecaE e−cθ−cE(a−θ)−1, where the expectation
is with respect to π(θ|x). Then

d

da
E (L(θ, a)|x) = cecaE e−cθ − c

set= 0,

and a = − 1
c log E e−cθ is the solution. The second derivative is positive, so this is the mini-

mum.
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