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Preface

This book contains more than 1000 exercises in probability and random processes, together
with their solutions. Apart from being a volume of worked exercises in its own right, it is
also 3 solutions manual for exercises and problems appearing in our textbook Probability and
Random Processes (3rd edn), Oxford University Press, 2001, henceforth referred to as PRP.
These exercises are not merely for drill, but complement and illustrate the text of PRP, or are
entertaining, or both. The current volume extends our earlier book Probability and Random
Processes: Problems and Solutions, and includes in addition around 400 new problems. Since
many exercises have multiple parts, the total number of interrogatives exceeds 3000.

Despite being intended in part as a companion to PRP, the present volume is as self-
contained as reasonably possible. Where knowledge of a substantial chunk of bookwork is
unavoidable, the reader is provided with a reference to the relevant passage in PRP. Expressions
such as ‘clearly’ appear frequently in the solutions. Although we do not use such terms in
their Laplacian sense to mean ‘with difficulty’, to call something ‘clear’ is not to imply that
explicit verification is necessarily free of tedium.

The table of contents reproduces that of PRP; the section and exercise numbers corre-
spond to those of PRP; there are occasional references to examples and equations in PRP.
The covered range of topics is broad, beginning with the elementary theory of probability
and random variables, and continuing, via chapters on Markov chains and convergence, to
extensive sections devoted to stationarity and ergodic theory, renewals, queues, martingales,
and diffusions, including an introduction to the pricing of options. Generally speaking, exer-
cises are questions which test knowledge of particular pieces of theory, while problems are
less specific in their requirements. There are questions of all standards, the great majority
being elementary or of intermediate difficulty. We ourselves have found some of the later
ones to be rather tricky, but have refrained from magnifying any difficulty by adding asterisks
or equivalent devices. If you are using this book for self-study, our advice would be not to
attempt more than a respectable fraction of these at a first read.

We pay tribute to all those anonymous pedagogues whose examination papers, work
assignments, and textbooks have been so influential in the shaping of this collection. To them
and to their successors we wish, in turn, much happy plundering. If you find errors, try to
keep them secret, except from us. If you know a better solution to any exercise, we will be
happy to substitute it in a later edition.

We acknowledge the expertise of Sarah Shea-Simonds in preparing the TEXscript of this
volume, and of Andy Burbanks in advising on the front cover design, which depicts a favourite
confluence of the authors.

Cambridge and Oxford G.R.G.
April 2001 D.R.S.
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Life is good for only two things, discovering mathematics and teaching it.
Siméon Poisson
In mathematics you don’t understand things, you just get used to them.
John von Neumann

Probability is the bane of the age.
Anthony Powell
Casanova’s Chinese Restaurant

The traditional professor writes a, says b, and means c; but it should be d.
George Polya

Download full file from answersun.com



Full file at
https://answersun.com/download
/solutions-manual-one-thousand-exercises-in-probability-1st-edition-by-grimmett-stirzake/

Contents

Questions
1 Events and their probabilities
1.1 Introduction
1.2 Events as sets 1
1.3 Probability 1
14 Conditional probability 2
1.5 Independence 3
1.6 Completeness and product spaces
1.7 Worked examples 4
1.8 Problems 4
2 Random variables and their distributions
2.1 Random variables 10
2.2 The law of averages 10
2.3 Discrete and continuous variables 11
24 Worked examples 11
2.5 Random vectors 12
2.6 Monte Carlo simulation
2.7 Problems 12
3 Discrete random variables
3.1 Probability mass functions 16
32 Independence 16
33 Expectation 17
34 Indicators and matching 18
35 Examples of discrete variables 19
3.6 Dependence 19
3.7 Conditional distributions and conditional expectation 20
3.8 Sums of random variables 21
39 Simple random walk 22
3.10 Random walk: counting sample paths 23
3.11  Problems 23

Download full file from answersun.com v

Solutions

135
135
137
139

140
141

151
152
152
152
153

154

158
158
161
162
165
165
167
169
170
171
172



Full file at

https://answersun.com/download

/solutions-manual-one-thousand-exercises-in-probability-1st-edition-by-grimmett-stirzake/

4 Continuous random variables

4.1
42
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Probability density functions
Independence

Expectation

Examples of continuous variables
Dependence

Conditional distributions and conditional expectation

Functions of random variables
Sums of random variables
Multivariate normal distribution

Distributions arising from the normal distribution

Sampling from a distribution
Coupling and Poisson approximation
Geometrical probability

Problems

5 Generating functions and their applications

5.1
52
53
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12

Generating functions

Some applications

Random walk

Branching processes
Age-dependent branching processes
Expectation revisited

Characteristic functions

Examples of characteristic functions
Inversion and continuity theorems
Two limit theorems

Large deviations

Problems

6 Markov chains

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

Markov processes

Classification of states

Classification of chains

Stationary distributions and the limit theorem
Reversibility

Chains with finitely many states
Branching processes revisited

Birth processes and the Poisson process
Continuous-time Markov chains
Uniform semigroups

Birth—death processes and imbedding
Special processes

Spatial Poisson processes

Markov chain Monte Carlo

Problems

viii

Download full file from answersun.com

29
29
30
30
31
32
33
34
35
36
36
37
38
39

48
49
50
51
52
52
53
54
55
56
57
57

64
65
66
67
68
69
70
71
72

73
74
74
75
76

Contents

187
188
189
190
191
193
195
199
201
202
204
205
206
209

230
232
234
238
239
241
241
244
247
249
253
254

272
275
276
281
286
287
289
290
293

297
299
301
303
304



Full file at
https://answersun.com/download

/solutions-manual-one-thousand-exercises-in-probability-1st-edition-by-grimmett-stirzake/
Contents

7 Convergence of random variables

7.1 Introduction 85 323
7.2 Modes of convergence 85 323
7.3 Some ancillary results 86 326
74 Laws of large numbers 88 330
7.5 The strong law 88 331
7.6 The law of the iterated logarithm 89 331
7.7 Martingales 89 331
7.8 Martingale convergence theorem 90 332
7.9 Prediction and conditional expectation 90 333
7.10  Uniform integrability 91 334
7.11  Problems 91 336
8 Random processes
8.1 Introduction
8.2 Stationary processes 97 349
83 Renewal processes 97 350
84 Queues 98 351
8.5 The Wiener process 99 352
8.6 Existence of processes
8.7 Problems 99 353
9 Stationary processes
9.1 Introduction 101 355
9.2 Linear prediction 101 356
9.3 Autocovariances and spectra 102 357
94 Stochastic integration and the spectral representation 102 359
9.5 The ergodic theorem 103 359
9.6 Gaussian processes 103 360
9.7 Problems 104 361
10 Renewals
10.1  The renewal equation 107 370
10.2  Limit theorems 107 371
10.3  Excess life 108 373
10.4  Applications 108 375
10.5  Renewal-reward processes 109 375
10.6  Problems 109 376
11 Queues
11.1  Single-server queues
112 MM 112 382
11.3 M/G/1 113 384
114 G/MN1 113 384
11.5  G/G/1 113 385
11.6  Heavy traffic 114 386
11.7  Networks of queues 114 386
11.8  Problems 115 387

Download full file from answersun.com DS



Full file at

https://answersun.com/download

/solutions-manual-one-thousand-exercises-in-probability-1st-edition-by-grimmett-stirzake/

12 Martingales

12.1  Introduction
12.2  Martingale differences and Hoeffding’s inequality
12.3  Crossings and convergence
124  Stopping times
12.5  Optional stopping
12.6  The maximal inequality
12.7  Backward martingales and continuous-time martingales
12.8  Some examples
12.9  Problems
13 Diffusion processes
13.1  Introduction
13.2  Brownian motion
13.3  Diffusion processes
13.4  First passage times
13.5  Barriers
13.6  Excursions and the Brownian bridge
13.7  Stochastic calculus
13.8  The It6 integral
13.9  It6’s formula
13.10 Option pricing
13.11 Passage probabilities and potentials
13.12 Problems
Bibliography
Index

Download full file from answersun.com

118
119
119
120
120

121

121

126
127
127
127
127
128
129
129
130
130

429
430

Contents

396
398
398
399
400

403

403

411
413
413
413
415
416
417
418
420
420



Full file at
https://answersun.com/download
/solutions-manual-one-thousand-exercises-in-probability-1st-edition-by-grimmett-stirzake/

1

Events and their probabilities

1.2 Exercises. Events as sets

1. Let{A; :i € I} be acollection of sets. Prove ‘De Morgan’s Laws’¥:
C C
(UA,-) =45, <ﬂA,~) =45
i i i i

2. Let A and B belong to some o-field . Show that # contains the sets AN B, A\ B,and A A B.

3. A conventional knock-out tournament (such as that at Wimbledon) begins with 2" competitors
and has »n rounds. There are no play-offs for the positions 2, 3, ..., 2" — 1, and the initial table of
draws is specified. Give a concise description of the sample space of all possible outcomes.

4. Let Fbe a o-field of subsets of €2 and suppose that B € . Show that§ = {ANB: A€ Flisa
o-field of subsets of B.

5. Which of the following are identically true? For those that are not, say when they are true.

(@ AU(BNC)=(AUB)N(AUC);

® AN(BNC)=(ANB)NC;

) (AUB)NC=AU(BNC);

d A\NBNC)=(A\B)U(A\().

1.3 Exercises. Probability

1. LetAand B beevents with probabilities P(A) = 3 and P(B) = . Show that {; < P(ANB) < 1,
and give examples to show that both extremes are possible. Find corresponding bounds for P(A U B).

2. A fair coin is tossed repeatedly. Show that, with probability one, a head turns up sooner or later.
Show similarly that any given finite sequence of heads and tails occurs eventually with probability
one. Explain the connection with Murphy’s Law.

3. Six cups and saucers come in pairs: there are two cups and saucers which are red, two white, and
two with stars on. If the cups are placed randemly onto the saucers (one each), find the probability
that no cup is upon a saucer of the same pattern.

‘+Augustus De Morgan is well known for having given the first clear statement of the principle of mathematical
induction. He applauded probability theory with the words: “The tendency of our study is to substitute the
satisfaction of mental exercise for the pernicious enjoyment of an immoral stimulus”.

1
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4. LetAq, Ap,..., Ay be events where n > 2, and prove that
n
1P’<U > Z]P’(A)—Z]P’(A NAD+ Y. P(A; N AN Ay)
i=1 i<j i<j<k

— e+ (D"IP(A; N AN N Ay).

In each packet of Corn Flakes may be found a plastic bust of one of the last five Vice-Chancellors
of Cambridge University, the probability that any given packet contains any specific Vice-Chancellor
being % independently of all other packets. Show that the probability that each of the last three

Vice-Chancellors is obtained in a bulk purchase of six packets is 1 — 3(%)6 + 3(%)6 - (%)6.
5. LetAr,r > 1,be events such that P(A,) = 1 for all r. Show that P(°2; A,) = 1.

6. You are given that at least one of the events A,, 1 < r < n, is certain to occur, but certainly no
more than two occur. If P(A;) = p, and P(A, N As) =g, r # s, show that p > 1/nand g < 2/n.

7. You are given that at least one, but no more than three, of the events A,, 1 < r < n, occur, where
n > 3. The probability of at least two occurring is % If P(A;) = p, P(Ar N As) = q,r # s, and
P(Ar NAs N A;) =x,r <s < t,show that p > 3/(2n), and g < 4/n.

1.4 Exercises. Conditional probability

1. Provethat P(A | B) = P(B | A)P(A)/P(B) whenever P(A)P(B) # 0. Show that, if P(A | B) >
P(A), then P(B | A) > P(B).

2. Forevents Ay, Ay, ..., A, satisfying P(A; N Ay N---NA,_1) > 0, prove that

P(AiNAZN---NAp) =P(ADP(Ay | ADP(A3 | Ay NA) - P(Ap | A1 N A2 NN Ap_q).

3. A man possesses five coins, two of which are double-headed, one is double-tailed, and two are
normal. He shuts his eyes, picks a coin at random, and tosses it. What is the probability that the lower
face of the coin is a head?

He opens his eyes and sees that the coin is showing heads; what is the probability that the lower
face is a head?

He shuts his eyes again, and tosses the coin again. What is the probability that the lower face is
a head?

He opens his eyes and sees that the coin is showing heads; what is the probability that the lower
face is a head?

He discards this coin, picks another at random, and tosses it. What is the probability that it shows
heads?

4. What do you think of the following ‘proof’ by Lewis Carroll that an urn cannot contain two balls
of the same colour? Suppose that the urn contains two balls, each of which is either black or white;

thus, in the obvious notation, P(BB) = P(BW) = P(WB) = P(WW) = ‘%. We add a black ball, so
that P(BBB) = P(BBW) = P(BWB) = P(BWW) = %. Next we pick a ball at random; the chance
that the ball is black is (using conditional probabilities) 1- § +2 - 1 + 2.1+ 1.1 = 2. However, if
there is probability % that a ball, chosen randomly from three, is black, then there must be two black
and one white, which is to say that originally there was one black and one white ball in the urn.

5. The Monty Hall problem: goats and cars. (a) Cruel fate has made you a contestant in a game
show; you have to choose one of three doors. One conceals a new car, two conceal old goats. You

2
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(b) Find the joint density function of X + Y and X /(X + Y), and deduce that they are independent.

(c) If Z is Poisson with parameter Az, and m is integral, show that P(Z < m) = P(X > 1).

(d) If0 < m < n and B is independent of Y with the beta distribution with parameters m and n — m,
show that Y B has the same distribution as X.

12. Let X, X», ..., Xn be independent N (0, 1) variables.

(a) Show that X is x2(1).

(b) Show that X % + X% is x2(2) by expressing its distribution function as an integral and changing
to polar coordinates.

(c) More generally, show that X% + X% + -+ X% is Xz(n).

13. Let X and Y have the bivariate normal distribution with means p, uy, variances 012, 022, and

correlation p. Show that

(@ E(X | Y) =p1 + po1(Y — pup)/o2,

(b) the variance of the conditional density function fxy is var(X | Y) = 012(1 - pz).

14. Let X and Y have joint density function f. Find the density function of Y/ X.

15. Let X and Y be independent variables with common density function f. Show that tan~1(Y/X)
has the uniform distribution on (— 3}, ) if and only if

/ £ Fay)lxldx = JeR.
—00

(1 +y?)’
Verify that this is valid if either f is the N (0, 1) density function or f(x) = a(1 + x*)~! for some
constant a.

16. Let X and Y be independent N (0, 1) variables, and think of (X, Y) as arandom point in the plane.

Change to polar coordinates (R, ®) given by RZ = X2 + Y2, tan ® = Y/ X; show that R? is x2(2),
tan © has the Cauchy distribution, and R and ® are independent. Find the density of R.

Find E(X2/R?) and
E{min{IXI, IYI}}
max{| X[, |Y]} |~

17. If X and Y are independent random variables, show that U = min{X, Y} and V = max{X, Y}
have distribution functions

Fy@) =1-{1-Fx}l{l - Fr)}, Fy(v)=Fx@)Fy().

Let X and Y be independent exponential variables, parameter 1. Show that
(a) U is exponential, parameter 2,
(b) V has the same distribution as X + %Y. Hence find the mean and variance of V.
18. Let X and Y be independent variables having the exponential distribution with parameters A and
w respectively. Let U = min{X, Y}, V = max{X,Y},and W=V - U.
(@ FindPU =X)=P(X <7Y).
(b) Show that U and W are independent.
19. Let X and Y be independent non-negative random variables with continuous density functions
on (0, 00). )
(a) If, given X + Y = u, X is uniformly distributed on [0, ] whatever the value of u, show that X
and Y have the exponential distribution.

41
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6. Let (2, #, P) be a probability space and let § be a sub-o-field of ¥. Let H be the space of
g-measurable random variables with finite second moment.

(a) Show that H is closed with respect to the norm || - ||2.

(b) Let Y be a random variable satisfying E(Y?2) < oo, and show the equivalence of the following
two statements for any M € H:
1) E{(Y —M)Z}=0forall Z € H,
(i) E{(Y — M)Ig} =0forall G € §.

7.10 Exercises. Uniform integrability

1. Show that the sum {X, + Y,} of two uniformly integrable sequences {X,} and {Y,} gives a
uniformly integrable sequence.

2. (a) Suppose that X, %> X where r > 1. Show that {IXn|" : n > 1} is uniformly integrable, and
deduce that E(X},) — E(X") if r is an integer.

(b) Conversely, suppose that {|X,|” : n > 1} is uniformly integrable where r > 1, and show that
Xn 5> Xif X, > X.

3. Letg:[0,00) — [0, c0) be an increasing function satisfying g(x)/x — oo as x — oo. Show

that the sequence {Xj, : n > 1} is uniformly integrable if sup, E{g(|Xx|)} < oo.

4. Let {Z, : n > 0} be the generation sizes of a branching process with Zy = 1, E(Zy) = 1,

var(Z) # 0. Show that {Z,, : n > 0} is not uniformly integrable.

5. Pratt’s lemma. Suppose that X, < ¥, < Z, where X, —P> X, Y, —P> Y,and Z, —l; Z. If

E(X,) — E(X) and E(Z,) — E(Z), show that E(Y,) — E(Y).

6. Let{X, : n > 1} be a sequence of variables satisfying E(sup, | X»|) < oo. Show that {X,} is
uniformly integrable.

7.11 Problems

1. Let X, have density function

n

Sax) = 71 4+ n2x2)’ n>1.

With respect to which modes of convergence does X, converge as n — co?

2. (i) Suppose that X, —5 X and ¥, > ¥, and show that X, + ¥, —> X + Y. Show that the
corresponding result holds for convergence in th mean and in probability, but not in distribution.

(i) Show that if X, 2% X and Y, 25 ¥ then X nYn 2% XY. Does the corresponding result hold
for the other modes of convergence?

3. Letg:R — R be continuous. Show that g(X,) —P> g(X) if X, —P> X.

4. LetY,Y,,... beindependent identically distributed variables, each of which can take any value
in {0, 1, ..., 9} with equal probability TIG Let X, =Y 7 ; ¥; 10~*. Show by the use of characteristic

functions that X, converges indistribution to the uniform distributionon [0, 1]. Deduce that X, i G
for some Y which is uniformly distributed on [0, 1].

5. Let N(z) be a Poisson process with constant intensity on R.

91
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7. @rkx)= aﬂxﬂ_l.

d)yrx)=A.

e ™M 4 (1l — a)eHx
ae~ M 4 (1 —a)e—H1*

8. Clearly ¢’ = —x¢. Using this identity and integrating by parts repeatedly,

oo Y 00 o
1—<1>(x)=/ ¢(u)du=—/ ?i_”)du=@+ oW

x x ud
_ ¢ () _/°° Ww , 0 ¢, 3@ _/°° 156 ()

X X3 u6

©rix)=

, which approaches min{A, u} as x — oo.

du.

u5 X x3 x5

4.5 Solutions. Dependence

1. (i) As the product of non-negative continuous functions, f is non- negative and continuous. Also
_ 0 1 _1,2.2 _
gx) = %e |x|/ N e 27XV dy = %e Il
—00 V2mx~

if x # 0, since the integrand is the N (0, x72) density function. It is easily seen that g(0) = 0, so that

g is discontinuous, while
o0 o0
/ gx)dx = / %e’lxl dx = 1.
o

-0

(ii) Clearly fo > 0 and

00 oo 00 n
/_oo/_oofg(x,y)dxdy=2(%) -1=1.

n=1

Also fg is the uniform limit of continuous functions on any subset of R? of the form [-M, M] x R;
hence fg is continuous. Hence fy is a continuous density function. On the other hand

00 0 n
[ townay=3(4)" s = am.

n=1

where g is discontinuous at 0.
(iii) Take Q to be the set of the rationals, in some order.

2. 'We may assume that the centre of the rod is uniformly positioned in a square of size a x b, while
the acute angle between the rod and a line of the first grid is uniform on [0, %ﬂ]. If the latter angle is
6 then, with the aid of a diagram, one finds that there is no intersection if and only if the centre of the
rod lies within a certain inner rectangle of size (a — r cos8) x (b — r sinf). Hence the probability of
an intersection is

2 i 2r 1
;LE/O {ab—(a—rcosG)(b—rsinO)}d@:;E(a_l_b_zr).

3. (i) Let I be the indicator of the event that the first needle intersects a line, and let J be the indicator
that the second needle intersects a line. By the result of Exercise (4.5.2), E(I) = E(J) = 2/m; hence
Z =1+ J satisfies E(3Z) = 2/x.

191
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where C = {two or more flies arrive in (¢, ¢ + ]} and D = {two or more wasps arrive in (¢, ¢ + h]}.
This probability is no greater than (Ah)(uh) + o(h) = o(h).

2. Let I be the incoming Poisson process, and let G be the process of arrivals of green insects.
Matters of independence are dealt with as above. Finally,

P(Gt+h)=n+1|G@)=n)=pP(I(t+h)=n+1|1¢) =n)+o0(h) = pAh + o(h),
P(GE+h)>n+1|G@t)=n) <P(I(t+h)>n+1[I(F) =n)=o(h).

3. Conditioning on 77 and using the time-homogeneity of the process,

P(E(t—u)>x) ifu<t,
]P’(E(t)>x]T1=u)= 0 ift <u<t+zx,
1 ifu>t+x,

(draw a diagram to help you see this). Therefore
(o¢]
P(E(t) > x) = / P(E(t) > x | Ty = u)he M du
0

t o0
= / P(E(t —u) > x)he ™ du +/ re M dy.
0 t+x

You may solve the integral equation using Laplace transforms. Alternately you may guess the
answer and then check that it works. The answer is P(E(f) < x) = 1 — e™**, the exponential
distribution. Actually this answer is obvious since E(¢t) > x if and only if there is no arrival in
[t,t + x], an event having probability e ~**.

4. The forward equation is
P @) = A0 = Dpi j—1(0) = Ajpij®, i<},

with boundary conditions p;;(0) = J;;, the Kronecker delta. We write G; (s, t) = Zj s/ pij (1), the
probability generating function of B(r) conditional on B(0) = i. Multiply through the differential
equation by s/ and sum over j:

9G; _, 291 _, 96

—_r ,
o " Tas 3s

a partial differential equation with boundary condition G; (s, 0) = s’. This may be solved in the usual
way to obtain G;(s, ) = g(e“ a1- s_l)) for some function g. Using the boundary condition, we
find that g(1 — s—1) = s’ and so g(u) = (1 — u)~, yielding

1 _ (se—)kt)i
(1—eM1—s—hHY ~ {1 —s1 —e M)}’

Gi(s,1) =
The coefficient of s/ is, by the binomial series,
O] pij () = e~ (f B 11>(1 —e M j=,
as required.
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Now Mp(s) is non-decreasing in s, and therefore it is the value with the minus sign. The density
function of B may be found by inverting the moment generating function; see Feller (1971, p. 482),
who has also an alternative derivation of Mp.

As for the mean and variance, either differentiate Mg, or differentiate (x). Following the latter
route, we obtain the following relations involving M (= Mp):

QAMM' + M+ (s —L—pu)M =0,
AMM" +20(M')? +2M' + (s — A — u)M" = 0.

Sets = 0to obtain M’(0) = (u—2)~! and M”(0) = 2u (1 —A)~3, whence the claims are immediate.

6. (i) This question is closely related to Exercise (11.3.1). With the same notation as in that solution,
we have that

() Ont1 =An+ Qn — h(Qn)

where A (x) = min{1, x}. Taking expectations, we obtain P(Q, > 0) = E(A,) where
(o ¢]
E(An) = /0 E(An | § = 5)dFs(s) = AE(S) = p,

and S is a typical service time. Square (x) and take expectations to obtain

p(1—2p) +E(A2, )
21— p)

E(Qn) =

’

where E(A2) is found (as above) to equal p + A2E(S?).

(ii) If a customer waits for time W and is served for time S, he leaves behind him a queue-length
which is Poisson with parameter A(W + §). In equilibrium, its mean satisfies AE(W + S) = E(Qy),
whence E(W) is given as claimed.

(iii) E(W) is a minimum when E(S?) is minimized, which occurs when S is concentrated at its mean.
Deterministic service times minimize mean waiting time.

7. Conditiononarrivalsin (¢, t+h). If there are no arrivals, then W; 4, < x ifandonly if Wy < x+h.
If there is an arrival, and his service time is S, then Wy, < x if and only if W; < x+h —S. Therefore

x+h
F(x;t4+h)=0—=Ah)F(x +h;t) +Ah/ F(x +h —s;t)dFg(s) + o(h).
0

Subtract F(x;t), divide by A, and take the limit as 4 | O, to obtain the differential equation.
We take Laplace—Stieltjes transforms. Integrating by parts, for 6 < 0,

/ &% dh(x) = —h(0) — 6(My ©) — HO)),
(0,00)
/ P dH(x) = My ©) - H(0),
(0,00)
/ ¥ dP(U + § < x) = My (9)Ms(6),
(0,00)

and therefore

0=—-h0)—0{My©)— HO)}+1HO) + My ©0){Ms©®) — 1}.
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