Student Study and Solutions Manual

Trigonometry

NINTH EDITION

Ron Larson

The Pennsylvania State University,
The Behrend College

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN\#, author, title, or keyword for materials in your areas of interest.

© 2014 Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions Further permissions questions can be emailed to permissionrequest@cengage.com.

ISBN-13: 978-1-133-95429-3
ISBN-10: 1-133-95429-4

Cengage Learning

200 First Stamford Place, 4th Floor
Stamford, CT 06902
USA
Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: www.cengage.com/global.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit www.cengage.com.

Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com.

CONTENTS

Part I Solutions to Select Exercises 1
Chapter P Prerequisites 1
Chapter 1 Trigonometry 61
Chapter 2 Analytic Trigonometry 108
Chapter 3 Additional Topics in Trigonometry 146
Chapter 4 Complex Numbers. 175
Chapter 5 Exponential and Logarithmic Functions 213
Chapter 6 Topics in Analytic Geometry 247
Solutions to Checkpoints 322
Solutions to Practice Tests 425
Part II Solutions to Chapter and Cumulative Tests 441

CHAPTER P
 Prerequisites

Section P. 1 Review of Real Numbers and Their Properties 2
Section P. 2 Solving Equations 3
Section P. 3 The Cartesian Plane and Graphs of Equations 8
Section P. 4 Linear Equations in Two Variables 14
Section P. 5 Functions 20
Section P. 6 Analyzing Graphs of Functions 25
Section P. 7 A Library of Parent Functions 30
Section P. 8 Transformations of Functions 33
Section P. 9 Combinations of Functions: Composite Functions 38
Section P. 10 Inverse Functions 42
Review Exercises 49
Problem Solving 56
Practice Test 59

C H A P TER P

Prerequisites

Section P. 1 Review of Real Numbers and Their Properties

1. irrational
2. absolute value
3. terms
4. $-9,-\frac{7}{2}, 5, \frac{2}{3}, \sqrt{2}, 0,1,-4,2,-11$
(a) Natural numbers: 5, 1, 2
(b) Whole numbers: $0,5,1,2$
(c) Integers: $-9,5,0,1,-4,2,-11$
(d) Rational numbers: $-9,-\frac{7}{2}, 5, \frac{2}{3}, 0,1,-4,2,-11$
(e) Irrational numbers: $\sqrt{2}$
5. $2.01,0.666 \ldots,-13,0.010110111 \ldots, 1,-6$
(a) Natural numbers: 1
(b) Whole numbers: 1
(c) Integers: $-13,1,-6$
(d) Rational numbers: 2.01, $0.666 \ldots,-13,1,-6$
(e) Irrational numbers: $0.010110111 \ldots$
6. (a)

(b)

(c)

(d)

7. $-4>-8$

8. $\frac{5}{6}>\frac{2}{3}$

9. (a) The inequality $x \leq 5$ denotes the set of all real numbers less than or equal to 5 .
(b)

(c) The interval is unbounded.
10. (a) The interval $[4, \infty)$ denotes the set of all real numbers greater than or equal to 4 .
(b)

(c) The interval is unbounded.
11. (a) The inequality $-2<x<2$ denotes the set of all real numbers greater than -2 and less than 2 .
(b)

(c) The interval is bounded.
12. (a) The interval $[-5,2)$ denotes the set of all real numbers greater than or equal to -5 and less than 2 .

(c) The interval is bounded.
13. $y \geq 0 ;[0, \infty)$
14. $10 \leq t \leq 22 ;[10,22]$
15. $W>65 ;(65, \infty)$
16. $|-10|=-(-10)=10$
17. $|3-8|=|-5|=-(-5)=5$
18. $|-1|-|-2|=1-2=-1$
19. $\frac{-5}{|-5|}=\frac{-5}{-(-5)}=\frac{-5}{5}=-1$
20. If $x<-2$, then $x+2$ is negative. So, $\frac{|x+2|}{x+2}=\frac{-(x+2)}{x+2}=-1$.
21. $|-4|=|4|$ because $|-4|=4$ and $|4|=4$.
22. $-|-6|<|-6|$ because $|-6|=6$ and $-|-6|=-(6)=-6$.
23. $d(126,75)=|75-126|=51$
24. $d\left(-\frac{5}{2}, 0\right)=\left|0-\left(-\frac{5}{2}\right)\right|=\frac{5}{2}$
25. $d\left(\frac{16}{5}, \frac{112}{75}\right)=\left|\frac{112}{75}-\frac{16}{5}\right|=\frac{128}{75}$
26. $d(x, 5)=|x-5|$ and $d(x, 5) \leq 3$, so $|x-5| \leq 3$.

Receipts, R Expenditures, E $\quad|\mathbf{R}-\mathbf{E}|$

55. $\$ 1880.1 \quad \$ 2292.8$
$\mid 1880.1$ - $2292.8 \mid=\$ 412.7$ billion
56. $\$ 2524.0$
\$2982.5
$|2524.0-2982.5|=\$ 458.5$ billion
57. $7 x+4$

Terms: $7 x, 4$
Coefficient: 7
61. $4 x^{3}+\frac{x}{2}-5$

Terms: $4 x^{3}, \frac{x}{2},-5$
Coefficients: $4, \frac{1}{2}$
63. $4 x-6$
(a) $4(-1)-6=-4-6=-10$
(b) $4(0)-6=0-6=-6$
71. $x(3 y)=(x \cdot 3) y$ Associative Property of Multiplication

$$
=(3 x) y \quad \text { Commutative Property of Multiplication }
$$

73. $\frac{5}{8}-\frac{5}{12}+\frac{1}{6}=\frac{15}{24}-\frac{10}{24}+\frac{4}{24}=\frac{9}{24}=\frac{3}{8}$
74. $\frac{2 x}{3}-\frac{x}{4}=\frac{8 x}{12}-\frac{3 x}{12}=\frac{5 x}{12}$
75. (a) Because $A>0,-A<0$.

The expression is negative.
(b) Because $B<A, B-A<0$. The expression is negative.
(c) Because $C<0,-C>0$.

The expression is positive.
(d) Because $A>C, A-C>0$. The expression is positive.
65. $-x^{2}+5 x-4$
(a) $-(-1)^{2}+5(-1)-4=-1-5-4=-10$
(b) $-(1)^{2}+5(1)-4=-1+5-4=0$
67. $\frac{1}{(h+6)}(h+6)=1, h \neq-6$

Multiplicative Inverse Property
69. $2(x+3)=2 \cdot x+2 \cdot 3$

Distributive Property
79. False. Because 0 is nonnegative but not positive, not every nonnegative number is positive.
81. (a)

n	0.0001	0.01	1	100	10,000
$5 / n$	50,000	500	5	0.05	0.0005

(b) (i) As n approaches 0 , the value of $5 / n$ increases without bound (approaches infinity).
(ii) As n increases without bound (approaches infinity), the value of $5 / n$ approaches 0 .

Section P. 2 Solving Equations

1. equation
2. extraneous
3. $x+11=15$

$$
x+11-11=15-11
$$

$$
x=4
$$

7. $7-2 x=25$
$7-7-2 x=25-7$

$$
-2 x=18
$$

$$
\frac{-2 x}{-2}=\frac{18}{-2}
$$

$$
x=-9
$$

$$
\text { 9. } \begin{aligned}
4 y+2-5 y & =7-6 y \\
4 y-5 y+2 & =7-6 y \\
-y+2 & =7-6 y \\
-y+6 y+2 & =7-6 y+6 y \\
5 y+2 & =7 \\
5 y+2-2 & =7-2 \\
5 y & =5 \\
\frac{5 y}{5} & =\frac{5}{5} \\
y & =1
\end{aligned}
$$

11. $x-3(2 x+3)=8-5 x$

$$
\begin{aligned}
x-6 x-9 & =8-5 x \\
-5 x-9 & =8-5 x \\
-5 x+5 x-9 & =8-5 x+5 x \\
-9 & \neq 8
\end{aligned}
$$

No solution
13. $\frac{3 x}{8}-\frac{4 x}{3}=4 \quad$ or $\quad \frac{3 x}{8}-\frac{4 x}{3}=4$

$$
\begin{array}{rlrl}
\frac{9 x}{24}-\frac{32 x}{24} & =4 & 24\left(\frac{3 x}{8}-\frac{4 x}{3}\right) & =24(4) \\
-\frac{23 x}{24} & =4 & 9 x-32 x & =96 \\
-\frac{23 x}{24}\left(-\frac{24}{23}\right) & =4\left(-\frac{24}{23}\right) & -23 x & =96 \\
x & =-\frac{96}{23} & x & =-\frac{96}{23}
\end{array}
$$

15. $\quad \frac{5 x-4}{5 x+4}=\frac{2}{3}$

$$
\begin{aligned}
3(5 x-4) & =2(5 x+4) \\
15 x-12 & =10 x+8 \\
5 x & =20 \\
x & =4
\end{aligned}
$$

17. $10-\frac{13}{x}=4+\frac{5}{x}$

$$
\begin{aligned}
\frac{10 x-13}{x} & =\frac{4 x+5}{x} \\
10 x-13 & =4 x+5 \\
6 x & =18 \\
x & =3
\end{aligned}
$$

19. $\frac{x}{x+4}+\frac{4}{x+4}+2=0$

$$
\begin{array}{r}
\frac{x+4}{x+4}+2=0 \\
1+2=0 \\
3 \neq 0
\end{array}
$$

Contradiction; no solution

The second method is easier. The fractions are eliminated in the first step.
21. $\frac{2}{(x-4)(x-2)}=\frac{1}{x-4}+\frac{2}{x-2} \quad$ Multiply both sides by $(x-4)(x-2)$.

$$
\begin{aligned}
2 & =1(x-2)+2(x-4) \\
2 & =x-2+2 x-8 \\
2 & =3 x-10 \\
12 & =3 x \\
4 & =x
\end{aligned}
$$

A check reveals that $x=4$ is an extraneous solution-it makes the denominator zero. There is no real solution.
23. $\frac{1}{x-3}+\frac{1}{x+3}=\frac{10}{x^{2}-9}$

$$
\begin{aligned}
\frac{1}{x-3}+\frac{1}{x+3} & =\frac{10}{(x+3)(x-3)} \quad \text { Multiply both sides by }(x+3)(x-3) . \\
1(x+3)+1(x-3) & =10 \\
2 x & =10 \\
x & =5
\end{aligned}
$$

